149
5

Social-LLaVA: Enhancing Robot Navigation through Human-Language Reasoning in Social Spaces

Abstract

Most existing social robot navigation techniques either leverage hand-crafted rules or human demonstrations to connect robot perception to socially compliant actions. However, there remains a significant gap in effectively translating perception into socially compliant actions, much like how human reasoning naturally occurs in dynamic environments. Considering the recent success of Vision-Language Models (VLMs), we propose using language to bridge the gap in human-like reasoning between perception and socially aware robot actions. We create a vision-language dataset, Social robot Navigation via Explainable Interactions (SNEI), featuring 40K human-annotated Visual Question Answers (VQAs) based on 2K human-robot social interactions in unstructured, crowded public spaces, spanning perception, prediction, chain-of-thought reasoning, action, and explanation. We fine-tune a VLM, Social-LLaVA, using SNEI to demonstrate the practical application of our dataset. Social-LLaVA outperforms state-of-the-art models like GPT-4V and Gemini, based on the average of fifteen different human-judge scores across 50 VQA. Deployed onboard a mobile robot, Social-LLaVA enables human-like reasoning, marking a promising step toward socially compliant robot navigation in dynamic public spaces through language reasoning.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.