ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.04068
  4. Cited By
Explainable Reinforcement Learning for Formula One Race Strategy

Explainable Reinforcement Learning for Formula One Race Strategy

7 January 2025
Devin Thomas
Junqi Jiang
Avinash Kori
Aaron Russo
Steffen Winkler
Stuart Sale
Joseph McMillan
Francesco Belardinelli
Antonio Rago
    LRM
ArXiv (abs)PDFHTML

Papers citing "Explainable Reinforcement Learning for Formula One Race Strategy"

13 / 13 papers shown
Title
Predictability and Comprehensibility in Post-Hoc XAI Methods: A
  User-Centered Analysis
Predictability and Comprehensibility in Post-Hoc XAI Methods: A User-Centered Analysis
Anahid N. Jalali
Bernhard Haslhofer
Simone Kriglstein
Andreas Rauber
FAtt
104
5
0
21 Sep 2023
Mastering Nordschleife -- A comprehensive race simulation for AI
  strategy decision-making in motorsports
Mastering Nordschleife -- A comprehensive race simulation for AI strategy decision-making in motorsports
Max Boettinger
David Klotz
36
1
0
28 Jun 2023
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient
  Algorithms
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
CMLAAML
52
35
0
01 Mar 2021
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
João Bento
Pedro Saleiro
André F. Cruz
Mário A. T. Figueiredo
P. Bizarro
FAttAI4TS
85
98
0
30 Nov 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
75
260
0
23 Apr 2020
Dota 2 with Large Scale Deep Reinforcement Learning
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNNVLMCLLAI4CELRM
181
1,840
0
13 Dec 2019
Verifiable Reinforcement Learning via Policy Extraction
Verifiable Reinforcement Learning via Policy Extraction
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
151
340
0
22 May 2018
Visualizing and Understanding Atari Agents
Visualizing and Understanding Atari Agents
S. Greydanus
Anurag Koul
Jonathan Dodge
Alan Fern
FAtt
135
348
0
31 Oct 2017
Hybrid Reward Architecture for Reinforcement Learning
Hybrid Reward Architecture for Reinforcement Learning
H. V. Seijen
Mehdi Fatemi
Joshua Romoff
Romain Laroche
Tavian Barnes
Jeffrey Tsang
100
253
0
13 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.3K
22,358
0
22 May 2017
Deep Recurrent Q-Learning for Partially Observable MDPs
Deep Recurrent Q-Learning for Partially Observable MDPs
Matthew J. Hausknecht
Peter Stone
140
1,686
0
23 Jul 2015
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
148
12,302
0
19 Dec 2013
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
330
3,240
0
02 Nov 2010
1