ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.03995
  4. Cited By
RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance

RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance

8 January 2025
Matin Mortaheb
M. A. Khojastepour
S. Chakradhar
S. Ulukus
    VLMRALM
ArXiv (abs)PDFHTML

Papers citing "RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance"

11 / 11 papers shown
Title
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Mohammad Mahdi Abootorabi
Amirhosein Zobeiri
Mahdi Dehghani
Mohammadali Mohammadkhani
Bardia Mohammadi
Omid Ghahroodi
M. Baghshah
Ehsaneddin Asgari
RALM
307
7
0
12 Feb 2025
Lookback Lens: Detecting and Mitigating Contextual Hallucinations in
  Large Language Models Using Only Attention Maps
Lookback Lens: Detecting and Mitigating Contextual Hallucinations in Large Language Models Using Only Attention Maps
Yung-Sung Chuang
Linlu Qiu
Cheng-Yu Hsieh
Ranjay Krishna
Yoon Kim
James R. Glass
HILM
69
47
0
09 Jul 2024
MARS: Meaning-Aware Response Scoring for Uncertainty Estimation in
  Generative LLMs
MARS: Meaning-Aware Response Scoring for Uncertainty Estimation in Generative LLMs
Yavuz Faruk Bakman
D. Yaldiz
Baturalp Buyukates
Chenyang Tao
Dimitrios Dimitriadis
A. Avestimehr
66
24
0
19 Feb 2024
VILA: On Pre-training for Visual Language Models
VILA: On Pre-training for Visual Language Models
Ji Lin
Hongxu Yin
Ming-Yu Liu
Yao Lu
Pavlo Molchanov
Andrew Tao
Huizi Mao
Jan Kautz
Mohammad Shoeybi
Song Han
MLLMVLM
88
425
0
12 Dec 2023
InstructBLIP: Towards General-purpose Vision-Language Models with
  Instruction Tuning
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
Wenliang Dai
Junnan Li
Dongxu Li
A. M. H. Tiong
Junqi Zhao
Weisheng Wang
Boyang Albert Li
Pascale Fung
Steven C. H. Hoi
MLLMVLM
136
2,095
0
11 May 2023
Sigmoid Loss for Language Image Pre-Training
Sigmoid Loss for Language Image Pre-Training
Xiaohua Zhai
Basil Mustafa
Alexander Kolesnikov
Lucas Beyer
CLIPVLM
237
1,200
0
27 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.5K
13,437
0
27 Feb 2023
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,810
0
26 Feb 2021
Fine-Tuning Language Models from Human Preferences
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
474
1,766
0
18 Sep 2019
Exploring Models and Data for Image Question Answering
Exploring Models and Data for Image Question Answering
Mengye Ren
Ryan Kiros
R. Zemel
80
718
0
08 May 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
424
43,814
0
01 May 2014
1