ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.01311
  4. Cited By
Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers
v1v2 (latest)

Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers

2 January 2025
Bohang Sun
Pietro Liò
    ViTAAML
ArXiv (abs)PDFHTML

Papers citing "Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers"

27 / 27 papers shown
Title
EU-Nets: Enhanced, Explainable and Parsimonious U-Nets
EU-Nets: Enhanced, Explainable and Parsimonious U-Nets
B. Sun
P. Liò
112
0
0
25 Feb 2025
ViT-CX: Causal Explanation of Vision Transformers
ViT-CX: Causal Explanation of Vision Transformers
Weiyan Xie
Xiao-hui Li
Caleb Chen Cao
Nevin L.Zhang
ViT
111
20
0
06 Nov 2022
Transformers in Medical Imaging: A Survey
Transformers in Medical Imaging: A Survey
Fahad Shamshad
Salman Khan
Syed Waqas Zamir
Muhammad Haris Khan
Munawar Hayat
Fahad Shahbaz Khan
Huazhu Fu
ViTLM&MAMedIm
197
712
0
24 Jan 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
204
5,281
0
10 Jan 2022
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D
  biomedical image classification
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D biomedical image classification
Jiancheng Yang
Rui Shi
D. Wei
Zequan Liu
Lin Zhao
B. Ke
Hanspeter Pfister
Bingbing Ni
VLM
328
709
0
27 Oct 2021
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision
  Transformer
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Sachin Mehta
Mohammad Rastegari
ViT
305
1,306
0
05 Oct 2021
U-Net Transformer: Self and Cross Attention for Medical Image
  Segmentation
U-Net Transformer: Self and Cross Attention for Medical Image Segmentation
Olivier Petit
Nicolas Thome
Clément Rambour
L. Soler
ViTMedIm
113
251
0
10 Mar 2021
Eigen-CAM: Class Activation Map using Principal Components
Eigen-CAM: Class Activation Map using Principal Components
Mohammed Bany Muhammad
M. Yeasin
83
346
0
01 Aug 2020
Quantifying Attention Flow in Transformers
Quantifying Attention Flow in Transformers
Samira Abnar
Willem H. Zuidema
199
808
0
02 May 2020
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Helen Zhou
FAtt
116
1,080
0
03 Oct 2019
Revealing the Dark Secrets of BERT
Revealing the Dark Secrets of BERT
Olga Kovaleva
Alexey Romanov
Anna Rogers
Anna Rumshisky
96
556
0
21 Aug 2019
What Does BERT Look At? An Analysis of BERT's Attention
What Does BERT Look At? An Analysis of BERT's Attention
Kevin Clark
Urvashi Khandelwal
Omer Levy
Christopher D. Manning
MILM
319
1,610
0
11 Jun 2019
Attention is not Explanation
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
176
1,333
0
26 Feb 2019
Attention Gated Networks: Learning to Leverage Salient Regions in
  Medical Images
Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images
Jo Schlemper
Ozan Oktay
M. Schaap
M. Heinrich
Bernhard Kainz
Ben Glocker
Daniel Rueckert
MedIm
142
1,488
0
22 Aug 2018
CBAM: Convolutional Block Attention Module
CBAM: Convolutional Block Attention Module
Sanghyun Woo
Jongchan Park
Joon-Young Lee
In So Kweon
242
16,797
0
17 Jul 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
255
1,181
0
19 Jun 2018
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
147
2,331
0
30 Oct 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
811
20,404
0
30 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
532
26,778
0
05 Sep 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
1.0K
133,589
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.4K
22,397
0
22 May 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
362
6,064
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
646
20,290
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
819
29,331
0
09 Sep 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.7K
195,301
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
2.1K
77,887
0
18 May 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
425
4,685
0
21 Dec 2014
1