ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.21149
  4. Cited By
Functional Risk Minimization

Functional Risk Minimization

31 December 2024
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
    OffRL
ArXiv (abs)PDFHTML

Papers citing "Functional Risk Minimization"

23 / 23 papers shown
Title
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
124
27
0
06 Dec 2021
Efficient and Modular Implicit Differentiation
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
114
238
0
31 May 2021
Deep learning: a statistical viewpoint
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
84
279
0
16 Mar 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
239
1,361
0
03 Oct 2020
Tailoring: encoding inductive biases by optimizing unsupervised
  objectives at prediction time
Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
Ferran Alet
Maria Bauza
Kenji Kawaguchi
Nurullah Giray Kuru
Tomas Lozano-Perez
L. Kaelbling
AI4CE
115
16
0
22 Sep 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
418
1,998
0
11 Apr 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
133
948
0
04 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
139
417
0
06 Nov 2019
Integrals over Gaussians under Linear Domain Constraints
Integrals over Gaussians under Linear Domain Constraints
A. Gessner
Oindrila Kanjilal
Philipp Hennig
69
30
0
21 Oct 2019
Test-Time Training with Self-Supervision for Generalization under
  Distribution Shifts
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTAOOD
99
96
0
29 Sep 2019
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
165
859
0
10 Sep 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
266
2,249
0
05 Jul 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
305
1,665
0
28 Dec 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
376
3,226
0
20 Jun 2018
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
260
2,240
0
08 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
102
510
0
26 Jan 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
101
128
0
30 Dec 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
116
897
0
30 Jun 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
389
7,619
0
02 Dec 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
372
4,639
0
10 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
377
5,398
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
228
2,542
0
02 Nov 2016
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
153
1,025
0
19 Mar 2015
1