Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2412.21149
Cited By
Functional Risk Minimization
31 December 2024
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Functional Risk Minimization"
23 / 23 papers shown
Title
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
124
27
0
06 Dec 2021
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
114
238
0
31 May 2021
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
84
279
0
16 Mar 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
239
1,361
0
03 Oct 2020
Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
Ferran Alet
Maria Bauza
Kenji Kawaguchi
Nurullah Giray Kuru
Tomas Lozano-Perez
L. Kaelbling
AI4CE
115
16
0
22 Sep 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
418
1,998
0
11 Apr 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
133
948
0
04 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
139
417
0
06 Nov 2019
Integrals over Gaussians under Linear Domain Constraints
A. Gessner
Oindrila Kanjilal
Philipp Hennig
69
30
0
21 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
99
96
0
29 Sep 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
165
859
0
10 Sep 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
266
2,249
0
05 Jul 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
305
1,665
0
28 Dec 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
376
3,226
0
20 Jun 2018
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
260
2,240
0
08 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
102
510
0
26 Jan 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
101
128
0
30 Dec 2017
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
116
897
0
30 Jun 2017
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
389
7,619
0
02 Dec 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
372
4,639
0
10 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
377
5,398
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
228
2,542
0
02 Nov 2016
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
153
1,025
0
19 Mar 2015
1