ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.19424
  4. Cited By
Temporal Context Consistency Above All: Enhancing Long-Term Anticipation
  by Learning and Enforcing Temporal Constraints

Temporal Context Consistency Above All: Enhancing Long-Term Anticipation by Learning and Enforcing Temporal Constraints

27 December 2024
Alberto Maté
Mariella Dimiccoli
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "Temporal Context Consistency Above All: Enhancing Long-Term Anticipation by Learning and Enforcing Temporal Constraints"

19 / 19 papers shown
Title
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
117
66
0
08 Feb 2023
Stochastic Polyak Stepsize with a Moving Target
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
73
17
0
22 Jun 2021
Adam$^+$: A Stochastic Method with Adaptive Variance Reduction
Adam+^++: A Stochastic Method with Adaptive Variance Reduction
Mingrui Liu
Wei Zhang
Francesco Orabona
Tianbao Yang
48
28
0
24 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
684
41,563
0
22 Oct 2020
Better Parameter-free Stochastic Optimization with ODE Updates for
  Coin-Betting
Better Parameter-free Stochastic Optimization with ODE Updates for Coin-Betting
K. Chen
John Langford
Francesco Orabona
59
22
0
12 Jun 2020
A new regret analysis for Adam-type algorithms
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
Volkan Cevher
ODL
79
43
0
21 Mar 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
88
188
0
24 Feb 2020
On the Variance of the Adaptive Learning Rate and Beyond
On the Variance of the Adaptive Learning Rate and Beyond
Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
ODL
300
1,909
0
08 Aug 2019
Momentum-Based Variance Reduction in Non-Convex SGD
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
98
410
0
24 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
111
210
0
24 May 2019
On the Convergence of Adaptive Gradient Methods for Nonconvex
  Optimization
On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization
Dongruo Zhou
Yiqi Tang
Yuan Cao
Ziyan Yang
Quanquan Gu
86
150
0
16 Aug 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training
  Deep Neural Networks
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
103
193
0
18 Jun 2018
Large Batch Training of Convolutional Networks
Large Batch Training of Convolutional Networks
Yang You
Igor Gitman
Boris Ginsburg
ODL
157
852
0
13 Aug 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
862
36,910
0
25 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
362
8,005
0
23 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,575
0
04 Sep 2014
Less Regret via Online Conditioning
Less Regret via Online Conditioning
Matthew J. Streeter
H. B. McMahan
ODL
101
66
0
25 Feb 2010
1