ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.00102
  4. Cited By
ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
v1v2 (latest)

ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?

27 November 2024
Pragati Shuddhodhan Meshram
Swetha Karthikeyan
Bhavya
Suma Bhat
ArXiv (abs)PDFHTMLGithub

Papers citing "ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?"

2 / 2 papers shown
Title
MatSciBench: Benchmarking the Reasoning Ability of Large Language Models in Materials Science
MatSciBench: Benchmarking the Reasoning Ability of Large Language Models in Materials Science
J. Zhang
Jingru Gan
Xiaoxuan Wang
Z. Jia
Changquan Gu
...
Y. Zhu
Mingyu Derek Ma
D. Zhou
Ling Li
Wei Wang
LRMELM
81
0
0
14 Oct 2025
AITEE -- Agentic Tutor for Electrical Engineering
AITEE -- Agentic Tutor for Electrical Engineering
Christopher Knievel
Alexander Bernhardt
Christian Bernhardt
90
0
0
27 May 2025
1