ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.19276
  4. Cited By
Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images
v1v2 (latest)

Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images

28 November 2024
Daniel Basilewitsch
João F. Bravo
Christian Tutschku
Frederick Struckmeier
Author Contacts:
daniel.basilewitsch@trumpf.comjoao.bravo@iao.fraunhofer.dechristian.tutschku@iao.fraunhofer.defrederick.struckmeier@trumpf.com
ArXiv (abs)PDFHTML

Papers citing "Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images"

22 / 22 papers shown
Title
Quantum Convolutional Neural Networks are (Effectively) Classically
  Simulable
Quantum Convolutional Neural Networks are (Effectively) Classically Simulable
Pablo Bermejo
Paolo Braccia
Manuel S. Rudolph
Zoë Holmes
L. Cincio
M. Cerezo
34
36
0
22 Aug 2024
Do Quantum Neural Networks have Simplicity Bias?
Do Quantum Neural Networks have Simplicity Bias?
Jessica Pointing
AI4CE
91
3
0
03 Jul 2024
Better than classical? The subtle art of benchmarking quantum machine
  learning models
Better than classical? The subtle art of benchmarking quantum machine learning models
Joseph Bowles
Shahnawaz Ahmed
Maria Schuld
73
76
0
11 Mar 2024
Does provable absence of barren plateaus imply classical simulability?
  Or, why we need to rethink variational quantum computing
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
M. Cerezo
Martín Larocca
Diego García-Martín
N. L. Diaz
Paolo Braccia
...
Pablo Bermejo
Aroosa Ijaz
Supanut Thanasilp
Eric R. Anschuetz
Zoë Holmes
68
134
0
14 Dec 2023
Training robust and generalizable quantum models
Training robust and generalizable quantum models
Julian Berberich
Daniel Fink
Daniel Pranjić
C. Tutschku
Christian Holm
OOD
54
14
0
20 Nov 2023
sQUlearn -- A Python Library for Quantum Machine Learning
sQUlearn -- A Python Library for Quantum Machine Learning
D. Kreplin
Moritz Willmann
Jan Schnabel
Frederic Rapp
Manuel Hagelüken
M. Roth
GP
64
11
0
15 Nov 2023
Let Quantum Neural Networks Choose Their Own Frequencies
Let Quantum Neural Networks Choose Their Own Frequencies
Ben Jaderberg
Antonio A. Gentile
Youssef Achari Berrada
Elvira Shishenina
V. Elfving
83
19
0
06 Sep 2023
Reduction of finite sampling noise in quantum neural networks
Reduction of finite sampling noise in quantum neural networks
D. Kreplin
Marco Roth
58
16
0
02 Jun 2023
Shadows of quantum machine learning
Shadows of quantum machine learning
Sofiene Jerbi
Casper Gyurik
Simon Marshall
Riccardo Molteni
Vedran Dunjko
62
46
0
31 May 2023
Quantum machine learning for image classification
Quantum machine learning for image classification
Arsenii Senokosov
Alexander Sedykh
Asel Sagingalieva
Basil Kyriacou
A. Melnikov
VLM
56
80
0
18 Apr 2023
Quantum-classical convolutional neural networks in radiological image
  classification
Quantum-classical convolutional neural networks in radiological image classification
A. Matic
Maureen Monnet
J. Lorenz
B. Schachtner
Thomas Messerer
73
35
0
26 Apr 2022
Quantum advantage in learning from experiments
Quantum advantage in learning from experiments
Hsin-Yuan Huang
Michael Broughton
Jordan S. Cotler
Sitan Chen
Jingkai Li
...
Hartmut Neven
Ryan Babbush
R. Kueng
J. Preskill
Jarrod R. McClean
53
479
0
01 Dec 2021
Training Quantum Embedding Kernels on Near-Term Quantum Computers
Training Quantum Embedding Kernels on Near-Term Quantum Computers
T. Hubregtsen
David Wierichs
Elies Gil-Fuster
Peter-Jan H. S. Derks
Paul K. Faehrmann
Johannes Jakob Meyer
71
101
0
05 May 2021
Information-theoretic bounds on quantum advantage in machine learning
Information-theoretic bounds on quantum advantage in machine learning
Hsin-Yuan Huang
R. Kueng
J. Preskill
103
222
0
07 Jan 2021
Variational Quantum Algorithms
Variational Quantum Algorithms
M. Cerezo
A. Arrasmith
Ryan Babbush
S. Benjamin
Suguru Endo
...
Jarrod R. McClean
K. Mitarai
Xiao Yuan
L. Cincio
Patrick J. Coles
100
2,521
0
16 Dec 2020
Absence of Barren Plateaus in Quantum Convolutional Neural Networks
Absence of Barren Plateaus in Quantum Convolutional Neural Networks
Arthur Pesah
M. Cerezo
Samson Wang
T. Volkoff
A. Sornborger
Patrick J. Coles
70
279
0
05 Nov 2020
Power of data in quantum machine learning
Power of data in quantum machine learning
Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
88
651
0
03 Nov 2020
A rigorous and robust quantum speed-up in supervised machine learning
A rigorous and robust quantum speed-up in supervised machine learning
Yunchao Liu
Srinivasan Arunachalam
K. Temme
85
542
0
05 Oct 2020
The effect of data encoding on the expressive power of variational
  quantum machine learning models
The effect of data encoding on the expressive power of variational quantum machine learning models
Maria Schuld
R. Sweke
Johannes Jakob Meyer
70
518
0
19 Aug 2020
Barren plateaus in quantum neural network training landscapes
Barren plateaus in quantum neural network training landscapes
Jarrod R. McClean
Sergio Boixo
V. Smelyanskiy
Ryan Babbush
Hartmut Neven
92
1,821
0
29 Mar 2018
Deep Learning using Rectified Linear Units (ReLU)
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
64
3,229
0
22 Mar 2018
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
1