ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.15292
  4. Cited By
Influence functions and regularity tangents for efficient active learning
v1v2 (latest)

Influence functions and regularity tangents for efficient active learning

22 November 2024
Frederik Eaton
    TDI
ArXiv (abs)PDFHTML

Papers citing "Influence functions and regularity tangents for efficient active learning"

8 / 8 papers shown
Title
Scaling Up Influence Functions
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
103
105
0
06 Dec 2021
Influence Selection for Active Learning
Influence Selection for Active Learning
Zhuoming Liu
Hao Ding
Huaping Zhong
Weijia Li
Jifeng Dai
Conghui He
TDI
77
96
0
20 Aug 2021
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
128
416
0
06 Nov 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
179
732
0
13 Jun 2018
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
219
2,910
0
14 Mar 2017
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
172
2,820
0
20 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
227
946
0
11 Feb 2015
Practical recommendations for gradient-based training of deep
  architectures
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DHODL
195
2,201
0
24 Jun 2012
1