Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2411.11101
Cited By
v1
v2 (latest)
Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
17 November 2024
Prakhar Ganesh
Usman Gohar
Lu Cheng
G. Farnadi
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML"
9 / 9 papers shown
Title
Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
Usman Gohar
Zeyu Tang
Jialu Wang
Kun Zhang
Peter Spirtes
Yang Liu
Lu Cheng
FaML
117
4
0
10 Jun 2024
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools
Maximilian Schambach
Rakshit Naidu
Rayid Ghani
Kit T. Rodolfa
Daniel E. Ho
Hoda Heidari
FaML
70
17
0
29 Sep 2023
Towards Understanding Fairness and its Composition in Ensemble Machine Learning
Usman Gohar
Sumon Biswas
Hridesh Rajan
FaML
FedML
67
26
0
08 Dec 2022
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Samuel Dooley
R. Sukthanker
John P. Dickerson
Colin White
Frank Hutter
Micah Goldblum
CVBM
121
23
0
18 Oct 2022
Predictive Multiplicity in Classification
Charles Marx
Flavio du Pin Calmon
Berk Ustun
136
147
0
14 Sep 2019
Rényi Fair Inference
Sina Baharlouei
Maher Nouiehed
Ahmad Beirami
Meisam Razaviyayn
FaML
64
67
0
28 Jun 2019
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
384
685
0
17 Feb 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
109
648
0
13 Feb 2018
Learning to Pivot with Adversarial Networks
Gilles Louppe
Michael Kagan
Kyle Cranmer
76
227
0
03 Nov 2016
1