ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.10015
  4. Cited By
MicroCrackAttentionNeXt: Advancing Microcrack Detection in Wave Field
  Analysis Using Deep Neural Networks through Feature Visualization

MicroCrackAttentionNeXt: Advancing Microcrack Detection in Wave Field Analysis Using Deep Neural Networks through Feature Visualization

15 November 2024
Fatahlla Moreh
Yusuf Hasan
Bilal Zahid Hussain
Mohammad Ammar
Sven Tomforde
ArXiv (abs)PDFHTML

Papers citing "MicroCrackAttentionNeXt: Advancing Microcrack Detection in Wave Field Analysis Using Deep Neural Networks through Feature Visualization"

12 / 12 papers shown
Title
Unified Focal loss: Generalising Dice and cross entropy-based losses to
  handle class imbalanced medical image segmentation
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
71
407
0
08 Feb 2021
A survey of loss functions for semantic segmentation
A survey of loss functions for semantic segmentation
Shruti Jadon
SSeg
67
840
0
26 Jun 2020
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
163
9,432
0
09 Feb 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
424
26,500
0
05 Sep 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
460
2,516
0
08 Jun 2017
Temporal Convolutional Networks: A Unified Approach to Action
  Segmentation
Temporal Convolutional Networks: A Unified Approach to Action Segmentation
Colin S. Lea
René Vidal
A. Reiter
Gregory Hager
89
755
0
29 Aug 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
300
5,524
0
23 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.8K
77,196
0
18 May 2015
Empirical Evaluation of Rectified Activations in Convolutional Network
Empirical Evaluation of Rectified Activations in Convolutional Network
Bing Xu
Naiyan Wang
Tianqi Chen
Mu Li
138
2,912
0
05 May 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.6K
100,386
0
04 Sep 2014
1