Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2411.09973
Cited By
Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
15 November 2024
Dominik Kowald
S. Scher
Viktoria Pammer-Schindler
Peter Müllner
Kerstin Waxnegger
Lea Demelius
Angela Fessl
M. Toller
Inti Gabriel Mendoza Estrada
Ilija Simic
Vedran Sabol
Andreas Truegler
Eduardo E. Veas
Roman Kern
Tomislav Nad
Simone Kopeinik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Establishing and Evaluating Trustworthy AI: Overview and Research Challenges"
47 / 47 papers shown
Title
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Harald Semmelrock
Tony Ross-Hellauer
Simone Kopeinik
Dieter Theiler
Armin Haberl
Stefan Thalmann
Dominik Kowald
92
10
0
20 Jun 2024
Ironies of Generative AI: Understanding and mitigating productivity loss in human-AI interactions
Auste Simkute
Lev Tankelevitch
Viktor Kewenig
A. E. Scott
Abigail Sellen
Sean Rintel
65
22
0
17 Feb 2024
Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation
Natalia Díaz Rodríguez
Javier Del Ser
Mark Coeckelbergh
Marcos López de Prado
E. Herrera-Viedma
Francisco Herrera
XAI
55
288
0
02 May 2023
How does HCI Understand Human Autonomy and Agency?
Dan Bennett
Oussama Metatla
A. Roudaut
Elisa D. Mekler
58
49
0
29 Jan 2023
Testing robustness of predictions of trained classifiers against naturally occurring perturbations
S. Scher
A. Trugler
OOD
AAML
71
1
0
21 Apr 2022
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems
Dominik Kowald
Emanuel Lacić
36
21
0
01 Mar 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
42
175
0
14 Feb 2022
AI in Finance: Challenges, Techniques and Opportunities
LongBing Cao
AIFin
69
258
0
20 Jul 2021
Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications
P. M. Winter
Sebastian K. Eder
J. Weissenbock
Christoph Schwald
Thomas Doms
Tom Vogt
Sepp Hochreiter
Bernhard Nessler
95
25
0
31 Mar 2021
Synthetic Data -- Anonymisation Groundhog Day
Theresa Stadler
Bristena Oprisanu
Carmela Troncoso
64
159
0
13 Nov 2020
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
133
841
0
16 Sep 2020
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring
Nijat Mehdiyev
Peter Fettke
AI4TS
48
55
0
04 Sep 2020
LiFT: A Scalable Framework for Measuring Fairness in ML Applications
Sriram Vasudevan
K. Kenthapadi
FaML
49
57
0
14 Aug 2020
On quantitative aspects of model interpretability
An-phi Nguyen
María Rodríguez Martínez
43
114
0
15 Jul 2020
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
76
1,144
0
02 Jul 2020
Why Fairness Cannot Be Automated: Bridging the Gap Between EU Non-Discrimination Law and AI
Sandra Wachter
Brent Mittelstadt
Chris Russell
FaML
56
282
0
12 May 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
79
224
0
01 May 2020
Trustworthy AI
Jeannette M. Wing
49
220
0
14 Feb 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
117
716
0
08 Jan 2020
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
67
51
0
15 Nov 2019
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang
Zhiyuan Qi
Keyu Duan
Dongbo Xi
Yongchun Zhu
Hengshu Zhu
Hui Xiong
Qing He
177
4,448
0
07 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
113
1,612
0
01 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,266
0
22 Oct 2019
Deep neural network or dermatologist?
Kyle Young
Gareth Booth
B. Simpson
R. Dutton
Sally Shrapnel
MedIm
46
69
0
19 Aug 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
142
481
0
28 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
170
3,431
0
28 Mar 2019
Aequitas: A Bias and Fairness Audit Toolkit
Pedro Saleiro
Benedict Kuester
Loren Hinkson
J. London
Abby Stevens
Ari Anisfeld
Kit T. Rodolfa
Rayid Ghani
106
323
0
14 Nov 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
132
1,966
0
08 Oct 2018
Security and Privacy Issues in Deep Learning
Ho Bae
Jaehee Jang
Dahuin Jung
Hyemi Jang
Heonseok Ha
Hyungyu Lee
Sungroh Yoon
SILM
MIACV
112
78
0
31 Jul 2018
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
77
458
0
03 Jul 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
76
526
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
Enabling Pedestrian Safety using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash
Puneet Kohli
Anjali Chadha
41
81
0
30 May 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
102
642
0
13 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
83
467
0
31 Jan 2018
Explainable AI: Beware of Inmates Running the Asylum Or: How I Learnt to Stop Worrying and Love the Social and Behavioural Sciences
Tim Miller
Piers Howe
L. Sonenberg
AI4TS
SyDa
51
373
0
02 Dec 2017
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
95
685
0
02 Nov 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
285
2,264
0
24 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,871
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
182
5,986
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,003
0
07 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
201
6,121
0
01 Jul 2016
Technical Privacy Metrics: a Systematic Survey
Isabel Wagner
D. Eckhoff
51
168
0
01 Dec 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
194
1,984
0
11 Dec 2014
Robust Kernel Density Estimation
JooSeuk Kim
Clayton D. Scott
OOD
67
390
0
15 Jul 2011
1