ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06848
  4. Cited By
Generative Feature Training of Thin 2-Layer Networks

Generative Feature Training of Thin 2-Layer Networks

11 November 2024
J. Hertrich
Sebastian Neumayer
    GAN
ArXivPDFHTML

Papers citing "Generative Feature Training of Thin 2-Layer Networks"

10 / 10 papers shown
Title
Fast Summation of Radial Kernels via QMC Slicing
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
76
5
0
02 Oct 2024
Sampling weights of deep neural networks
Sampling weights of deep neural networks
Erik Lien Bolager
Iryna Burak
Chinmay Datar
Q. Sun
Felix Dietrich
BDL
UQCV
51
18
0
29 Jun 2023
HARFE: Hard-Ridge Random Feature Expansion
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
96
15
0
06 Feb 2022
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
Aaron Mishkin
Arda Sahiner
Mert Pilanci
OffRL
116
30
0
02 Feb 2022
Generalization Error Analysis of Neural networks with Gradient Based
  Regularization
Generalization Error Analysis of Neural networks with Gradient Based Regularization
Lingfeng Li
X. Tai
Jiang Yang
23
4
0
06 Jul 2021
Interpretable Approximation of High-Dimensional Data
Interpretable Approximation of High-Dimensional Data
D. Potts
Michael Schmischke
25
17
0
25 Mar 2021
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
82
627
0
14 Jul 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
100
174
0
23 Apr 2020
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
  Optimization Formulations for Two-layer Networks
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
Mert Pilanci
Tolga Ergen
77
118
0
24 Feb 2020
Greedy Layerwise Learning Can Scale to ImageNet
Greedy Layerwise Learning Can Scale to ImageNet
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
112
180
0
29 Dec 2018
1