ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.05934
63
1

Qwen2.5-32B: Leveraging Self-Consistent Tool-Integrated Reasoning for Bengali Mathematical Olympiad Problem Solving

8 November 2024
Saad Tahmid
Sourav Sarker
    LRMAIMat
ArXiv (abs)PDFHTML
Abstract

We present an innovative approach for solving mathematical problems in Bengali, developed for the DL Sprint 3.0 BUET CSE Fest 2024 Competition. Our method uses advanced deep learning models, notably the Qwen 2.5 series, with improvements made through prompt engineering, model quantization, and Tool Integrated Reasoning (TIR) to handle complex calculations. Initially, we explored various model architectures, including fine-tuned Mistral and quantized Qwen models, refining them with translation techniques, Retrieval-Augmented Generation (RAG), and custom dataset curation. Manual hyperparameter tuning optimized parameters like temperature and top-p to enhance model adaptability and accuracy. Removal of RAG and parameter adjustments further improved robustness. Our approach highlights the potential of advanced NLP techniques in solving Bengali mathematical problems.

View on arXiv
Comments on this paper