Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2411.05874
Cited By
v1
v2 (latest)
Interplay between Federated Learning and Explainable Artificial Intelligence: a Scoping Review
7 November 2024
Luis M. Lopez-Ramos
Florian Leiser
Aditya Rastogi
Steven Hicks
Inga Strümke
V. Madai
Tobias Budig
Ali Sunyaev
A. Hilbert
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interplay between Federated Learning and Explainable Artificial Intelligence: a Scoping Review"
35 / 35 papers shown
Title
Towards Artificial General or Personalized Intelligence? A Survey on Foundation Models for Personalized Federated Intelligence
Yu Qiao
Huy Q. Le
Avi Deb Raha
Phuong-Nam Tran
Apurba Adhikary
Mengchun Zhang
Loc X. Nguyen
Eui-nam Huh
Dusit Niyato
Choong Seon Hong
AI4CE
165
1
0
11 May 2025
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
94
10
0
11 Oct 2024
FedEmb: A Vertical and Hybrid Federated Learning Algorithm using Network And Feature Embedding Aggregation
Fanfei Meng
Lele Zhang
Yu Chen
Yuxin Wang
FedML
91
4
0
30 Nov 2023
Post Hoc Explanations of Language Models Can Improve Language Models
Satyapriya Krishna
Jiaqi Ma
Dylan Slack
Asma Ghandeharioun
Sameer Singh
Himabindu Lakkaraju
ReLM
LRM
95
59
0
19 May 2023
Towards Interpretable Federated Learning
Anran Li
Rui Liu
Ming Hu
Anh Tuan Luu
Han Yu
AI4CE
FedML
121
15
0
27 Feb 2023
Balancing Privacy Protection and Interpretability in Federated Learning
Zhe Li
Honglong Chen
Zhichen Ni
Huajie Shao
FedML
83
8
0
16 Feb 2023
Group Personalized Federated Learning
Zhe Liu
Yue Hui
Fuchun Peng
FedML
99
2
0
04 Oct 2022
Reward Systems for Trustworthy Medical Federated Learning
Konstantin D. Pandl
Florian Leiser
Scott Thiebes
Ali Sunyaev
OOD
FedML
78
7
0
01 May 2022
CXR-FL: Deep Learning-Based Chest X-ray Image Analysis Using Federated Learning
Filip Ślazyk
Przemysław Jabłecki
Aneta Lisowska
Maciej Malawski
Szymon Płotka
FedML
75
9
0
11 Apr 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data
Y. Cheung
Juyong Jiang
F. Yu
Jian Lou
FedML
77
12
0
03 Mar 2022
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Tian Dong
Song Li
Han Qiu
Jialiang Lu
FedML
43
16
0
10 Jan 2022
Privacy-preserving Federated Adversarial Domain Adaption over Feature Groups for Interpretability
Yan Kang
Yang Liu
Yuezhou Wu
Guoqiang Ma
Qiang Yang
71
40
0
22 Nov 2021
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
110
446
0
11 Nov 2021
IFedAvg: Interpretable Data-Interoperability for Federated Learning
David Roschewitz
Mary-Anne Hartley
Luca Corinzia
Martin Jaggi
FedML
65
7
0
14 Jul 2021
Designing ECG Monitoring Healthcare System with Federated Transfer Learning and Explainable AI
Ali Raza
K. Tran
L. Koehl
Shujun Li
81
135
0
26 May 2021
Fed-EINI: An Efficient and Interpretable Inference Framework for Decision Tree Ensembles in Federated Learning
Xiaolin Chen
Shuai Zhou
Bei Guan
Kai Yang
Hao Fao
Hu. Wang
Yongji Wang
FedML
166
16
0
20 May 2021
Interpretable collaborative data analysis on distributed data
A. Imakura
Hiroaki Inaba
Yukihiko Okada
Tetsuya Sakurai
FedML
38
26
0
09 Nov 2020
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
99
472
0
31 Jul 2020
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
160
827
0
28 Jul 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
301
1,813
0
18 Mar 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
333
6,391
0
22 Oct 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
130
1,016
0
23 Jul 2019
Interpret Federated Learning with Shapley Values
Guan Wang
FAtt
FedML
71
92
0
11 May 2019
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
331
1,472
0
09 Nov 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
279
4,012
0
06 Feb 2018
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
1.0K
133,599
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.4K
22,400
0
22 May 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
397
6,065
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
648
20,292
0
07 Oct 2016
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
162
793
0
05 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
539
17,797
0
17 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.3K
17,241
0
16 Feb 2016
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
427
4,685
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
343
7,344
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
656
15,935
0
12 Nov 2013
1