ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.05855
  4. Cited By
Learning Morphisms with Gauss-Newton Approximation for Growing Networks

Learning Morphisms with Gauss-Newton Approximation for Growing Networks

7 November 2024
Neal Lawton
Aram Galstyan
Greg Ver Steeg
ArXiv (abs)PDFHTML

Papers citing "Learning Morphisms with Gauss-Newton Approximation for Growing Networks"

31 / 31 papers shown
Title
Splitting Steepest Descent for Growing Neural Architectures
Splitting Steepest Descent for Growing Neural Architectures
Qiang Liu
Lemeng Wu
Dilin Wang
96
63
0
06 Oct 2019
AutoGAN: Neural Architecture Search for Generative Adversarial Networks
AutoGAN: Neural Architecture Search for Generative Adversarial Networks
Xinyu Gong
Shiyu Chang
Yi Ding
Zhangyang Wang
GAN
92
263
0
11 Aug 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
409
6,828
0
06 May 2019
Fast Neural Architecture Search of Compact Semantic Segmentation Models
  via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Vladimir Nekrasov
Hao Chen
Chunhua Shen
Ian Reid
SSeg
82
149
0
25 Oct 2018
Rethinking the Value of Network Pruning
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
42
1,477
0
11 Oct 2018
Neural Architecture Optimization
Neural Architecture Optimization
Renqian Luo
Fei Tian
Tao Qin
Enhong Chen
Tie-Yan Liu
3DV
102
658
0
22 Aug 2018
MnasNet: Platform-Aware Neural Architecture Search for Mobile
MnasNet: Platform-Aware Neural Architecture Search for Mobile
Mingxing Tan
Bo Chen
Ruoming Pang
Vijay Vasudevan
Mark Sandler
Andrew G. Howard
Quoc V. Le
MQ
128
3,018
0
31 Jul 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
206
4,375
0
24 Jun 2018
Efficient Multi-objective Neural Architecture Search via Lamarckian
  Evolution
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution
T. Elsken
J. H. Metzen
Frank Hutter
223
503
0
24 Apr 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
277
3,489
0
09 Mar 2018
Transfer Learning with Neural AutoML
Transfer Learning with Neural AutoML
Catherine Wong
N. Houlsby
Yifeng Lu
Andrea Gesmundo
60
114
0
07 Mar 2018
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
Hieu H. Pham
M. Guan
Barret Zoph
Quoc V. Le
J. Dean
117
2,770
0
09 Feb 2018
Regularized Evolution for Image Classifier Architecture Search
Regularized Evolution for Image Classifier Architecture Search
Esteban Real
A. Aggarwal
Yanping Huang
Quoc V. Le
185
3,039
0
05 Feb 2018
Progressive Neural Architecture Search
Progressive Neural Architecture Search
Chenxi Liu
Barret Zoph
Maxim Neumann
Jonathon Shlens
Wei Hua
Li Li
Li Fei-Fei
Alan Yuille
Jonathan Huang
Kevin Patrick Murphy
117
1,997
0
02 Dec 2017
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep
  Networks
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks
A. Gordon
Elad Eban
Ofir Nachum
Bo Chen
Hao Wu
Tien-Ju Yang
Edward Choi
74
339
0
18 Nov 2017
Progressive Growing of GANs for Improved Quality, Stability, and
  Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras
Timo Aila
S. Laine
J. Lehtinen
GAN
181
7,380
0
27 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,605
0
05 Sep 2017
Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu
Jianguo Li
Zhiqiang Shen
Gao Huang
Shoumeng Yan
Changshui Zhang
138
2,427
0
22 Aug 2017
SMASH: One-Shot Model Architecture Search through HyperNetworks
SMASH: One-Shot Model Architecture Search through HyperNetworks
Andrew Brock
Theodore Lim
J. Ritchie
Nick Weston
167
765
0
17 Aug 2017
Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
208
5,612
0
21 Jul 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
152
6,896
0
04 Jul 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,900
0
17 Apr 2017
Deep Pyramidal Residual Networks
Deep Pyramidal Residual Networks
Dongyoon Han
Jiwhan Kim
Junmo Kim
124
694
0
10 Oct 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDEBDLPINN
1.5K
14,618
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
843
36,910
0
25 Aug 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLLAI4CE
83
2,465
0
15 Jun 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
217
2,365
0
30 Mar 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
167
7,503
0
24 Feb 2016
Net2Net: Accelerating Learning via Knowledge Transfer
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
187
672
0
18 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,864
0
01 Oct 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,575
0
04 Sep 2014
1