ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.03753
  4. Cited By
Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length
v1v2 (latest)

Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length

6 November 2024
Zihan Yu
Jingtao Ding
Yong Li
ArXiv (abs)PDFHTML

Papers citing "Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length"

26 / 26 papers shown
Title
LLM-Meta-SR: Learning to Evolve Selection Operators for Symbolic Regression
LLM-Meta-SR: Learning to Evolve Selection Operators for Symbolic Regression
Hengzhe Zhang
Qi Chen
Bing Xue
Mengjie Zhang
66
0
0
24 May 2025
Automated discovery of symbolic laws governing skill acquisition from
  naturally occurring data
Automated discovery of symbolic laws governing skill acquisition from naturally occurring data
Sannyuya Liu
Qing Li
Xiaoxuan Shen
Jianwen Sun
Zongkai Yang
42
9
0
08 Apr 2024
A Comprehensive Survey on Artificial Intelligence for Complex Network: Potential, Methodology and Application
A Comprehensive Survey on Artificial Intelligence for Complex Network: Potential, Methodology and Application
Jingtao Ding
Chang Liu
Y. Zheng
Yunke Zhang
Zihan Yu
...
Hongyi Chen
J. Piao
Huandong Wang
Jiazhen Liu
Yong Li
AI4CE
75
13
0
23 Feb 2024
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified
  Pre-training
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
Kazem Meidani
Parshin Shojaee
Chandan K. Reddy
A. Farimani
121
19
0
03 Oct 2023
RSRM: Reinforcement Symbolic Regression Machine
RSRM: Reinforcement Symbolic Regression Machine
Yilong Xu
Yang Liu
Haoqin Sun
50
4
0
24 May 2023
Controllable Neural Symbolic Regression
Controllable Neural Symbolic Regression
Tommaso Bendinelli
Luca Biggio
Pierre-Alexandre Kamienny
73
15
0
20 Apr 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
62
82
0
06 Mar 2023
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Pierre-Alexandre Kamienny
Guillaume Lample
Sylvain Lamprier
M. Virgolin
96
31
0
22 Feb 2023
Toward Physically Plausible Data-Driven Models: A Novel Neural Network
  Approach to Symbolic Regression
Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression
Jiří Kubalík
Erik Derner
Robert Babuška
62
12
0
01 Feb 2023
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
  Inference
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
Emile van Krieken
Thiviyan Thanapalasingam
Jakub M. Tomczak
F. V. Harmelen
A. T. Teije
84
39
0
23 Dec 2022
Interpretable Scientific Discovery with Symbolic Regression: A Review
Interpretable Scientific Discovery with Symbolic Regression: A Review
N. Makke
Sanjay Chawla
114
112
0
20 Nov 2022
End-to-end symbolic regression with transformers
End-to-end symbolic regression with transformers
Pierre-Alexandre Kamienny
Stéphane dÁscoli
Guillaume Lample
Franccois Charton
102
177
0
22 Apr 2022
Deep Symbolic Regression for Recurrent Sequences
Deep Symbolic Regression for Recurrent Sequences
Stéphane dÁscoli
Pierre-Alexandre Kamienny
Guillaume Lample
Franccois Charton
154
55
0
12 Jan 2022
Symbolic Regression via Neural-Guided Genetic Programming Population
  Seeding
Symbolic Regression via Neural-Guided Genetic Programming Population Seeding
T. Nathan Mundhenk
Mikel Landajuela
Ruben Glatt
Claudio Santiago
Daniel Faissol
Brenden K. Petersen
113
92
0
29 Oct 2021
Contemporary Symbolic Regression Methods and their Relative Performance
Contemporary Symbolic Regression Methods and their Relative Performance
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
201
262
0
29 Jul 2021
Neural Symbolic Regression that Scales
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurelien Lucchi
Giambattista Parascandolo
99
180
0
11 Jun 2021
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
107
193
0
18 Jun 2020
Deep symbolic regression: Recovering mathematical expressions from data
  via risk-seeking policy gradients
Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden K. Petersen
Mikel Landajuela
T. Nathan Mundhenk
Claudio Santiago
Soo K. Kim
Joanne T. Kim
68
319
0
10 Dec 2019
Integration of Neural Network-Based Symbolic Regression in Deep Learning
  for Scientific Discovery
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
Samuel Kim
Peter Y. Lu
Srijon Mukherjee
M. Gilbert
Li Jing
V. Ceperic
Marin Soljacic
67
169
0
10 Dec 2019
Epsilon-Lexicase Selection for Regression
Epsilon-Lexicase Selection for Regression
William La Cava
Lee Spector
K. Danai
56
136
0
30 May 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
168
887
0
27 May 2019
Learning concise representations for regression by evolving networks of
  trees
Learning concise representations for regression by evolving networks of trees
William La Cava
T. Singh
James Taggart
S. Suri
J. Moore
67
58
0
03 Jul 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
811
132,725
0
12 Jun 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
  Comparison
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
412
381
0
01 Mar 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
825
39,255
0
09 Mar 2016
Attentive Pooling Networks
Attentive Pooling Networks
Cicero Nogueira dos Santos
Ming Tan
Bing Xiang
Bowen Zhou
81
347
0
11 Feb 2016
1