Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2411.03746
Cited By
Optimal Defenses Against Gradient Reconstruction Attacks
6 November 2024
Yuxiao Chen
Gamze Gürsoy
Qi Lei
FedML
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Defenses Against Gradient Reconstruction Attacks"
8 / 8 papers shown
Title
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
73
4
0
13 Feb 2024
Defending against Reconstruction Attacks with Rényi Differential Privacy
Pierre Stock
I. Shilov
Ilya Mironov
Alexandre Sablayrolles
AAML
SILM
MIACV
47
39
0
15 Feb 2022
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
39
24
0
19 Nov 2021
Selective Differential Privacy for Language Modeling
Weiyan Shi
Aiqi Cui
Evan Li
R. Jia
Zhou Yu
44
69
0
30 Aug 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
50
71
0
04 Jul 2021
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
82
1,217
0
31 Mar 2020
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
114
1,399
0
05 Dec 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
251
17,328
0
17 Feb 2016
1