ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.02064
  4. Cited By
Amortized Bayesian Experimental Design for Decision-Making
v1v2 (latest)

Amortized Bayesian Experimental Design for Decision-Making

3 January 2025
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
ArXiv (abs)PDFHTML

Papers citing "Amortized Bayesian Experimental Design for Decision-Making"

38 / 38 papers shown
Title
PABBO: Preferential Amortized Black-Box Optimization
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
84
1
0
02 Mar 2025
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
96
8
0
20 Oct 2024
Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
Shijie Zhong
Wanggang Shen
Tommie A. Catanach
Xun Huan
63
4
0
26 Mar 2024
Practical Equivariances via Relational Conditional Neural Processes
Practical Equivariances via Relational Conditional Neural Processes
Daolang Huang
Manuel Haussmann
Ulpu Remes
S. T. John
Grégoire Clarté
K. Luck
Samuel Kaski
Luigi Acerbi
BDL
134
9
0
19 Jun 2023
PFNs4BO: In-Context Learning for Bayesian Optimization
PFNs4BO: In-Context Learning for Bayesian Optimization
Samuel G. Müller
Matthias Feurer
Noah Hollmann
Frank Hutter
106
41
0
27 May 2023
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
A. Maraval
Matthieu Zimmer
Antoine Grosnit
H. Ammar
BDL
87
17
0
25 May 2023
Learning Robust Statistics for Simulation-based Inference under Model
  Misspecification
Learning Robust Statistics for Simulation-based Inference under Model Misspecification
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
112
35
0
25 May 2023
Prediction-Oriented Bayesian Active Learning
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
84
36
0
17 Apr 2023
Autoregressive Conditional Neural Processes
Autoregressive Conditional Neural Processes
W. Bruinsma
Stratis Markou
James Requiema
Andrew Y. K. Foong
Tom R. Andersson
Anna Vaughan
Anthony Buonomo
J. S. Hosking
Richard Turner
BDLUQCV
88
25
0
25 Mar 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
102
88
0
28 Feb 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian
  Experimental Design
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
79
3
0
27 Feb 2023
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Willie Neiswanger
Lantao Yu
Shengjia Zhao
Chenlin Meng
Stefano Ermon
UQCV
80
11
0
04 Oct 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDLUQCV
87
107
0
09 Jul 2022
Practical Conditional Neural Processes Via Tractable Dependent
  Predictions
Practical Conditional Neural Processes Via Tractable Dependent Predictions
Stratis Markou
James Requeima
W. Bruinsma
Anna Vaughan
Richard Turner
UQCVAI4CE
81
25
0
16 Mar 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable
  Implicit Models
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
69
11
0
08 Mar 2022
Online Decision Transformer
Online Decision Transformer
Qinqing Zheng
Amy Zhang
Aditya Grover
OffRL
86
209
0
11 Feb 2022
Optimizing Sequential Experimental Design with Deep Reinforcement
  Learning
Optimizing Sequential Experimental Design with Deep Reinforcement Learning
Tom Blau
Edwin V. Bonilla
Iadine Chadès
Amir Dezfouli
BDLOffRL
73
44
0
02 Feb 2022
Loss-calibrated expectation propagation for approximate Bayesian
  decision-making
Loss-calibrated expectation propagation for approximate Bayesian decision-making
Michael J. Morais
Jonathan W. Pillow
82
6
0
10 Jan 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDLUQCV
92
170
0
20 Dec 2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
123
48
0
03 Nov 2021
Post-hoc loss-calibration for Bayesian neural networks
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCVBDL
78
7
0
13 Jun 2021
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on
  OpenML
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
Sebastian Pineda Arango
H. Jomaa
Martin Wistuba
Josif Grabocka
84
60
0
11 Jun 2021
Targeted Active Learning for Bayesian Decision-Making
Targeted Active Learning for Bayesian Decision-Making
Louis Filstroff
Iiris Sundin
P. Mikkola
A. Tiulpin
Juuso Kylmäoja
Samuel Kaski
61
5
0
08 Jun 2021
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
Lili Chen
Kevin Lu
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
A. Srinivas
Igor Mordatch
OffRL
156
1,662
0
02 Jun 2021
Bayesian Algorithm Execution: Estimating Computable Properties of
  Black-box Functions Using Mutual Information
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
Willie Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
78
30
0
19 Apr 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
67
85
0
03 Mar 2021
Bayesian Experimental Design for Implicit Models by Mutual Information
  Neural Estimation
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
86
66
0
19 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
580
42,677
0
03 Dec 2019
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal
  Experiments
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
67
61
0
01 Nov 2019
Variational Bayesian Optimal Experimental Design
Variational Bayesian Optimal Experimental Design
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
94
140
0
13 Mar 2019
Variational Bayesian Decision-making for Continuous Utilities
Variational Bayesian Decision-making for Continuous Utilities
Tomasz Kuśmierczyk
J. Sakaya
Arto Klami
126
21
0
02 Feb 2019
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
90
706
0
04 Jul 2018
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
Adam D. Cobb
Stephen J. Roberts
Y. Gal
BDLUQCV
73
43
0
10 May 2018
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
131
132
0
18 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
589
19,315
0
20 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
819
132,725
0
12 Jun 2017
Improving drug sensitivity predictions in precision medicine through
  active expert knowledge elicitation
Improving drug sensitivity predictions in precision medicine through active expert knowledge elicitation
Iiris Sundin
Tomi Peltola
M. M. Majumder
Pedram Daee
Marta Soare
Homayun Afrabandpey
C. Heckman
Samuel Kaski
Pekka Marttinen
53
24
0
09 May 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRLVLM
274
1,545
0
25 Jan 2017
1