Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.24222
Cited By
v1
v2 (latest)
Robust Gaussian Processes via Relevance Pursuit
8 January 2025
Sebastian Ament
Elizabeth Santorella
David Eriksson
Ben Letham
Maximilian Balandat
E. Bakshy
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robust Gaussian Processes via Relevance Pursuit"
23 / 23 papers shown
Title
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Sebastian Ament
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
80
80
0
08 Jan 2025
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
52
2
0
11 Oct 2024
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
71
13
0
01 Nov 2023
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
70
16
0
21 Apr 2023
Robust Gaussian Process Regression with Huber Likelihood
Pooja Algikar
L. Mili
GP
22
10
0
19 Jan 2023
Discovering Many Diverse Solutions with Bayesian Optimization
Natalie Maus
Kaiwen Wu
David Eriksson
Jacob R. Gardner
63
25
0
20 Oct 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
75
24
0
20 May 2022
Sparse Bayesian Learning via Stepwise Regression
Sebastian Ament
Carla P. Gomes
50
6
0
11 Jun 2021
On the Optimality of Backward Regression: Sparse Recovery and Subset Selection
Sebastian Ament
Carla P. Gomes
34
6
0
06 Jun 2021
Robust Gaussian Process Regression Based on Iterative Trimming
Zhaozhou Li
Lu Li
Z. Shao
18
23
0
22 Nov 2020
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
David J. Borth
Nicholas S. Wilson
Chad N. Hunter
F. Friedersdorf
53
28
0
14 Jan 2020
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,100
0
28 Sep 2018
A Tutorial on Bayesian Optimization
P. Frazier
GP
111
1,788
0
08 Jul 2018
On Matching Pursuit and Coordinate Descent
Francesco Locatello
Anant Raj
Sai Praneeth Karimireddy
Gunnar Rätsch
Bernhard Schölkopf
Sebastian U. Stich
Martin Jaggi
39
23
0
26 Mar 2018
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
53
95
0
09 Nov 2017
Robust Bayesian Optimization with Student-t Likelihood
Ruben Martinez-Cantin
M. McCourt
K. Tee
29
6
0
18 Jul 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
54
214
0
05 Jun 2017
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe
Francesco Locatello
Rajiv Khanna
Michael Tschannen
Martin Jaggi
50
50
0
21 Feb 2017
Restricted Strong Convexity Implies Weak Submodularity
Ethan R. Elenberg
Rajiv Khanna
A. Dimakis
S. Negahban
68
159
0
02 Dec 2016
Accurate and efficient numerical calculation of stable densities via optimized quadrature and asymptotics
Sebastian Ament
M. O’Neil
90
22
0
14 Jul 2016
Student-t Processes as Alternatives to Gaussian Processes
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
90
203
0
18 Feb 2014
Near-optimal Nonmyopic Value of Information in Graphical Models
Andreas Krause
Carlos Guestrin
79
467
0
04 Jul 2012
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
95
165
0
22 Jun 2011
1