ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.24222
  4. Cited By
Robust Gaussian Processes via Relevance Pursuit
v1v2 (latest)

Robust Gaussian Processes via Relevance Pursuit

8 January 2025
Sebastian Ament
Elizabeth Santorella
David Eriksson
Ben Letham
Maximilian Balandat
E. Bakshy
    GP
ArXiv (abs)PDFHTML

Papers citing "Robust Gaussian Processes via Relevance Pursuit"

23 / 23 papers shown
Title
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Sebastian Ament
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
80
80
0
08 Jan 2025
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
52
2
0
11 Oct 2024
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
71
13
0
01 Nov 2023
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
70
16
0
21 Apr 2023
Robust Gaussian Process Regression with Huber Likelihood
Robust Gaussian Process Regression with Huber Likelihood
Pooja Algikar
L. Mili
GP
22
10
0
19 Jan 2023
Discovering Many Diverse Solutions with Bayesian Optimization
Discovering Many Diverse Solutions with Bayesian Optimization
Natalie Maus
Kaiwen Wu
David Eriksson
Jacob R. Gardner
63
25
0
20 Oct 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
75
24
0
20 May 2022
Sparse Bayesian Learning via Stepwise Regression
Sparse Bayesian Learning via Stepwise Regression
Sebastian Ament
Carla P. Gomes
50
6
0
11 Jun 2021
On the Optimality of Backward Regression: Sparse Recovery and Subset
  Selection
On the Optimality of Backward Regression: Sparse Recovery and Subset Selection
Sebastian Ament
Carla P. Gomes
34
6
0
06 Jun 2021
Robust Gaussian Process Regression Based on Iterative Trimming
Robust Gaussian Process Regression Based on Iterative Trimming
Zhaozhou Li
Lu Li
Z. Shao
18
23
0
22 Nov 2020
Robust Gaussian Process Regression with a Bias Model
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
David J. Borth
Nicholas S. Wilson
Chad N. Hunter
F. Friedersdorf
53
28
0
14 Jan 2020
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,100
0
28 Sep 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
111
1,788
0
08 Jul 2018
On Matching Pursuit and Coordinate Descent
On Matching Pursuit and Coordinate Descent
Francesco Locatello
Anant Raj
Sai Praneeth Karimireddy
Gunnar Rätsch
Bernhard Schölkopf
Sebastian U. Stich
Martin Jaggi
39
23
0
26 Mar 2018
Scalable Log Determinants for Gaussian Process Kernel Learning
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
53
95
0
09 Nov 2017
Robust Bayesian Optimization with Student-t Likelihood
Robust Bayesian Optimization with Student-t Likelihood
Ruben Martinez-Cantin
M. McCourt
K. Tee
29
6
0
18 Jul 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
54
214
0
05 Jun 2017
A Unified Optimization View on Generalized Matching Pursuit and
  Frank-Wolfe
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe
Francesco Locatello
Rajiv Khanna
Michael Tschannen
Martin Jaggi
50
50
0
21 Feb 2017
Restricted Strong Convexity Implies Weak Submodularity
Restricted Strong Convexity Implies Weak Submodularity
Ethan R. Elenberg
Rajiv Khanna
A. Dimakis
S. Negahban
68
159
0
02 Dec 2016
Accurate and efficient numerical calculation of stable densities via
  optimized quadrature and asymptotics
Accurate and efficient numerical calculation of stable densities via optimized quadrature and asymptotics
Sebastian Ament
M. O’Neil
90
22
0
14 Jul 2016
Student-t Processes as Alternatives to Gaussian Processes
Student-t Processes as Alternatives to Gaussian Processes
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
90
203
0
18 Feb 2014
Near-optimal Nonmyopic Value of Information in Graphical Models
Near-optimal Nonmyopic Value of Information in Graphical Models
Andreas Krause
Carlos Guestrin
79
467
0
04 Jul 2012
Gaussian Process Regression with a Student-t Likelihood
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
95
165
0
22 Jun 2011
1