ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.22591
  4. Cited By
FGCE: Feasible Group Counterfactual Explanations for Auditing Fairness
v1v2 (latest)

FGCE: Feasible Group Counterfactual Explanations for Auditing Fairness

29 October 2024
Christos Fragkathoulas
Vasiliki Papanikou
E. Pitoura
Evimaria Terzi
ArXiv (abs)PDFHTML

Papers citing "FGCE: Feasible Group Counterfactual Explanations for Auditing Fairness"

10 / 10 papers shown
Title
GLOBE-CE: A Translation-Based Approach for Global Counterfactual
  Explanations
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
80
19
0
26 May 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
121
32
0
21 Oct 2022
A Clarification of the Nuances in the Fairness Metrics Landscape
A Clarification of the Nuances in the Fairness Metrics Landscape
Alessandro Castelnovo
Riccardo Crupi
Greta Greco
D. Regoli
Ilaria Giuseppina Penco
A. Cosentini
FaML
53
191
0
01 Jun 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
105
229
0
25 Feb 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
153
175
0
20 Oct 2020
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
102
646
0
04 Oct 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
130
6,321
0
22 Oct 2019
Efficient Search for Diverse Coherent Explanations
Efficient Search for Diverse Coherent Explanations
Chris Russell
75
239
0
02 Jan 2019
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
135
2,366
0
01 Nov 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
1