ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.21683
  4. Cited By
Pushing the Limits of All-Atom Geometric Graph Neural Networks:
  Pre-Training, Scaling and Zero-Shot Transfer

Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer

29 October 2024
Zihan Pengmei
Zhengyuan Shen
Zichen Wang
Marcus Collins
Huzefa Rangwala
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer"

19 / 19 papers shown
Title
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance
  Matching
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching
Shengchao Liu
Hongyu Guo
Jian Tang
97
80
0
27 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
91
501
0
15 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffMAI4CE
114
127
0
31 May 2022
Learning Local Equivariant Representations for Large-Scale Atomistic
  Dynamics
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
101
463
0
11 Apr 2022
Training Compute-Optimal Large Language Models
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
211
1,987
0
29 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
101
197
0
05 Feb 2022
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
1.0K
29,926
0
26 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
544
0
05 Feb 2021
Scaling Laws for Transfer
Scaling Laws for Transfer
Danny Hernandez
Jared Kaplan
T. Henighan
Sam McCandlish
95
251
0
02 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
385
6,592
0
26 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
304
7,500
0
06 Oct 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
311
2,752
0
02 May 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
143
881
0
06 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
651
4,925
0
23 Jan 2020
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,324
0
11 Oct 2018
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CEBDL
164
361
0
30 Oct 2017
VAMPnets: Deep learning of molecular kinetics
VAMPnets: Deep learning of molecular kinetics
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
70
546
0
16 Oct 2017
DeepSF: deep convolutional neural network for mapping protein sequences
  to folds
DeepSF: deep convolutional neural network for mapping protein sequences to folds
Jie Hou
B. Adhikari
Jianlin Cheng
70
202
0
04 Jun 2017
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,035
0
12 Mar 2015
1