Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.20380
Cited By
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion
27 October 2024
Zhenheng Tang
Yonggang Zhang
Peijie Dong
Y. Cheung
Amelie Chi Zhou
Bo Han
Xiaowen Chu
FedML
MoMe
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion"
42 / 42 papers shown
Title
One-shot Federated Learning Methods: A Practical Guide
Xiang Liu
Zhenheng Tang
Xia Li
Yijun Song
Sijie Ji
Zemin Liu
Bo Han
Linshan Jiang
Jialin Li
FedML
110
1
0
13 Feb 2025
Robust Training of Federated Models with Extremely Label Deficiency
Yonggang Zhang
Zhiqin Yang
Xinmei Tian
Nannan Wang
Tongliang Liu
Bo Han
FedML
94
6
0
22 Feb 2024
FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training
Zhenheng Tang
Xiaowen Chu
Ryan Yide Ran
Sunwoo Lee
Shaoshuai Shi
Yonggang Zhang
Yuxin Wang
Alex Liang
A. Avestimehr
Chaoyang He
FedML
46
10
0
03 Mar 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
44
20
0
01 Feb 2023
Tackling Data Heterogeneity in Federated Learning with Class Prototypes
Yutong Dai
Zhenpeng Chen
Junnan Li
Shelby Heinecke
Lichao Sun
Ran Xu
FedML
48
82
0
06 Dec 2022
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
49
126
0
20 Oct 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
264
326
0
11 Sep 2022
Federated Learning with Label Distribution Skew via Logits Calibration
Jie M. Zhang
Zhiqi Li
Yue Liu
Jianghe Xu
Shuang Wu
Shouhong Ding
Chao Wu
FedML
50
141
0
01 Sep 2022
Disentangled Federated Learning for Tackling Attributes Skew via Invariant Aggregation and Diversity Transferring
Zhengquan Luo
Yunlong Wang
Zilei Wang
Zhenan Sun
Tieniu Tan
FedML
24
43
0
14 Jun 2022
Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning
Zhenheng Tang
Yonggang Zhang
Shaoshuai Shi
Xinfu He
Bo Han
Xiaowen Chu
FedML
56
74
0
06 Jun 2022
Federated Class-Incremental Learning
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Tianlin Li
Qi Zhu
CLL
FedML
49
175
0
22 Mar 2022
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
62
655
0
21 Feb 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
Chaoyang He
Alay Dilipbhai Shah
Zhenheng Tang
Adarshan Naiynar Sivashunmugam
Keerti Bhogaraju
Mita Shimpi
Li Shen
Xiaowen Chu
Mahdi Soltanolkotabi
Salman Avestimehr
VLM
FedML
65
68
0
22 Nov 2021
FairFed: Enabling Group Fairness in Federated Learning
Yahya H. Ezzeldin
Shen Yan
Chaoyang He
Emilio Ferrara
A. Avestimehr
FedML
45
206
0
02 Oct 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
30
258
0
11 Jun 2021
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
Mi Luo
Fei Chen
Dapeng Hu
Yifan Zhang
Jian Liang
Jiashi Feng
FedML
58
332
0
09 Jun 2021
Towards a Theoretical Framework of Out-of-Distribution Generalization
Haotian Ye
Chuanlong Xie
Tianle Cai
Ruichen Li
Zhenguo Li
Liwei Wang
OODD
OOD
70
108
0
08 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
41
96
0
05 Jun 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
282
855
0
01 Mar 2021
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
48
79
0
30 Oct 2020
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric Xing
Afshin Rostamizadeh
FedML
68
109
0
11 Oct 2020
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
Hong-You Chen
Wei-Lun Chao
FedML
27
259
0
04 Sep 2020
What is being transferred in transfer learning?
Behnam Neyshabur
Hanie Sedghi
Chiyuan Zhang
47
513
0
26 Aug 2020
A Self-supervised Approach for Adversarial Robustness
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
AAML
40
254
0
08 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
359
41,106
0
28 May 2020
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
53
1,313
0
20 May 2020
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
57
573
0
25 Apr 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
126
2,023
0
16 Apr 2020
Federated Visual Classification with Real-World Data Distribution
T. Hsu
Qi
Matthew Brown
FedML
103
199
0
18 Mar 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
62
554
0
06 Jan 2020
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
47
167
0
24 Dec 2019
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
67
845
0
08 Oct 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
47
454
0
26 Sep 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
99
1,128
0
13 Sep 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
153
1,454
0
16 Jul 2019
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
111
1,461
0
10 May 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
59
505
0
13 Mar 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
130
3,433
0
09 Mar 2018
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
76
1,399
0
31 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
86
8,807
0
25 Aug 2017
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
194
7,410
0
02 Dec 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
249
4,620
0
18 Oct 2016
1