ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.18652
  4. Cited By
$C^2$: Scalable Auto-Feedback for LLM-based Chart Generation
v1v2 (latest)

C2C^2C2: Scalable Auto-Feedback for LLM-based Chart Generation

24 October 2024
Woosung Koh
Jang Han Yoon
MinHyung Lee
Youngjin Song
Jaegwan Cho
Jaehyun Kang
Taehyeon Kim
Se-Young Yun
Youngjae Yu
B. Lee
ArXiv (abs)PDFHTML

Papers citing "$C^2$: Scalable Auto-Feedback for LLM-based Chart Generation"

16 / 16 papers shown
Title
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Bradley Brown
Jordan Juravsky
Ryan Ehrlich
Ronald Clark
Quoc V. Le
Christopher Ré
Azalia Mirhoseini
ALMLRM
245
325
0
03 Jan 2025
Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
Fatemeh Pesaran Zadeh
Juyeon Kim
Jin-Hwa Kim
Gunhee Kim
ALM
97
5
0
05 Oct 2024
Scaling LLM Test-Time Compute Optimally can be More Effective than
  Scaling Model Parameters
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Charlie Snell
Jaehoon Lee
Kelvin Xu
Aviral Kumar
LRM
193
692
0
06 Aug 2024
ChartFormer: A Large Vision Language Model for Converting Chart Images
  into Tactile Accessible SVGs
ChartFormer: A Large Vision Language Model for Converting Chart Images into Tactile Accessible SVGs
Omar Moured
Sara Alzalabny
Anas Osman
Thorsten Schwarz
Karin Muller
Rainer Stiefelhagen
84
1
0
29 May 2024
ChartLlama: A Multimodal LLM for Chart Understanding and Generation
ChartLlama: A Multimodal LLM for Chart Understanding and Generation
Yucheng Han
C. Zhang
Xin Chen
Xu Yang
Zhibin Wang
Gang Yu
Bin-Bin Fu
Hanwang Zhang
MLLM
70
106
0
27 Nov 2023
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural
  Language
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language
Yuan Tian
Weiwei Cui
Dazhen Deng
Xinjing Yi
Yurun Yang
Haidong Zhang
Yingcai Wu
112
72
0
03 Nov 2023
Parameterizing Context: Unleashing the Power of Parameter-Efficient
  Fine-Tuning and In-Context Tuning for Continual Table Semantic Parsing
Parameterizing Context: Unleashing the Power of Parameter-Efficient Fine-Tuning and In-Context Tuning for Continual Table Semantic Parsing
Yongrui Chen
Shenyu Zhang
Guilin Qi
Xinnan Guo
CLL
62
8
0
07 Oct 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAGMLLM
1.5K
14,699
0
15 Mar 2023
Large Language Models Can Self-Improve
Large Language Models Can Self-Improve
Jiaxin Huang
S. Gu
Le Hou
Yuexin Wu
Xuezhi Wang
Hongkun Yu
Jiawei Han
ReLMAI4MHLRM
199
612
0
20 Oct 2022
Striking a Balance: Reader Takeaways and Preferences when Integrating
  Text and Charts
Striking a Balance: Reader Takeaways and Preferences when Integrating Text and Charts
Chase Stokes
V. Setlur
Bridget Cogley
Arvind Satyanarayan
Marti A. Hearst
80
55
0
02 Aug 2022
Understanding Data Visualization Design Practice
Understanding Data Visualization Design Practice
Paul C. Parsons
AI4CE
44
32
0
17 Aug 2021
ChartStory: Automated Partitioning, Layout, and Captioning of Charts
  into Comic-Style Narratives
ChartStory: Automated Partitioning, Layout, and Captioning of Charts into Comic-Style Narratives
Jian Zhao
Shenyu Xu
Senthil K. Chandrasegaran
Chris Bryan
F. Du
Aditi Mishra
Xin-Yao Qian
Yiran Li
K. Ma
60
43
0
06 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,810
0
26 Feb 2021
Towards Understanding How Readers Integrate Charts and Captions: A Case
  Study with Line Charts
Towards Understanding How Readers Integrate Charts and Captions: A Case Study with Line Charts
Dae Hyun Kim
V. Setlur
Maneesh Agrawala
42
56
0
20 Jan 2021
NL4DV: A Toolkit for Generating Analytic Specifications for Data
  Visualization from Natural Language Queries
NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from Natural Language Queries
Arpit Narechania
Arjun Srinivasan
J. Stasko
52
180
0
24 Aug 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
611
4,905
0
23 Jan 2020
1