ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15923
  4. Cited By
Automatic Differentiation of Optimization Algorithms with Time-Varying
  Updates
v1v2 (latest)

Automatic Differentiation of Optimization Algorithms with Time-Varying Updates

21 October 2024
Sheheryar Mehmood
Peter Ochs
ArXiv (abs)PDFHTML

Papers citing "Automatic Differentiation of Optimization Algorithms with Time-Varying Updates"

17 / 17 papers shown
Title
On Penalty-based Bilevel Gradient Descent Method
On Penalty-based Bilevel Gradient Descent Method
Han Shen
Quan-Wu Xiao
Tianyi Chen
112
59
0
08 Jan 2025
One-step differentiation of iterative algorithms
One-step differentiation of iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
122
15
0
23 May 2023
Fixed-Point Automatic Differentiation of Forward--Backward Splitting
  Algorithms for Partly Smooth Functions
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
73
3
0
05 Aug 2022
The derivatives of Sinkhorn-Knopp converge
The derivatives of Sinkhorn-Knopp converge
Edouard Pauwels
Samuel Vaiter
65
6
0
26 Jul 2022
Automatic differentiation of nonsmooth iterative algorithms
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
84
23
0
31 May 2022
Multiscale Deep Equilibrium Models
Multiscale Deep Equilibrium Models
Shaojie Bai
V. Koltun
J. Zico Kolter
BDL
94
212
0
15 Jun 2020
Monotone operator equilibrium networks
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
76
130
0
15 Jun 2020
A mathematical model for automatic differentiation in machine learning
A mathematical model for automatic differentiation in machine learning
Jérôme Bolte
Edouard Pauwels
65
68
0
03 Jun 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
398
1,988
0
11 Apr 2020
Super-efficiency of automatic differentiation for functions defined as a
  minimum
Super-efficiency of automatic differentiation for functions defined as a minimum
Pierre Ablin
Gabriel Peyré
Thomas Moreau
68
42
0
10 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
565
42,639
0
03 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
130
416
0
06 Nov 2019
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
206
4,375
0
24 Jun 2018
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
171
972
0
01 Mar 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
435
18,361
0
27 May 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
172
2,820
0
20 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
234
946
0
11 Feb 2015
1