Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.15723
Cited By
S-CFE: Simple Counterfactual Explanations
21 October 2024
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"S-CFE: Simple Counterfactual Explanations"
22 / 22 papers shown
Title
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
52
5
0
04 Apr 2024
Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees
Faisal Hamman
Erfaun Noorani
Saumitra Mishra
Daniele Magazzeni
Sanghamitra Dutta
OOD
AAML
52
33
0
19 May 2023
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
50
15
0
27 Oct 2022
Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm
Mingkang Zhu
Tianlong Chen
Zhangyang Wang
AAML
37
20
0
10 Jun 2021
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
53
136
0
04 Jun 2021
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
45
25
0
12 Apr 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
319
21,175
0
25 Mar 2021
Evaluating Robustness of Counterfactual Explanations
André Artelt
Valerie Vaquet
Riza Velioglu
Fabian Hinder
Johannes Brinkrolf
M. Schilling
Barbara Hammer
69
46
0
03 Mar 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
53
169
0
20 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
47
172
0
08 Oct 2020
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
34
47
0
12 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
94
60
0
11 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
261
42,038
0
03 Dec 2019
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
62
199
0
11 Sep 2019
Towards Robust, Locally Linear Deep Networks
Guang-He Lee
David Alvarez-Melis
Tommi Jaakkola
ODL
101
48
0
07 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
45
380
0
03 Jul 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
73
2,332
0
01 Nov 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
168
8,513
0
16 Aug 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
221
1,208
0
16 Aug 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
582
16,828
0
16 Feb 2016
1