ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15723
  4. Cited By
S-CFE: Simple Counterfactual Explanations

S-CFE: Simple Counterfactual Explanations

21 October 2024
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
ArXivPDFHTML

Papers citing "S-CFE: Simple Counterfactual Explanations"

22 / 22 papers shown
Title
CountARFactuals -- Generating plausible model-agnostic counterfactual
  explanations with adversarial random forests
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
52
5
0
04 Apr 2024
Robust Counterfactual Explanations for Neural Networks With
  Probabilistic Guarantees
Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees
Faisal Hamman
Erfaun Noorani
Saumitra Mishra
Daniele Magazzeni
Sanghamitra Dutta
OOD
AAML
52
33
0
19 May 2023
Improvement-Focused Causal Recourse (ICR)
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
50
15
0
27 Oct 2022
Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm
Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm
Mingkang Zhu
Tianlong Chen
Zhangyang Wang
AAML
37
20
0
10 Jun 2021
Counterfactual Explanations Can Be Manipulated
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
53
136
0
04 Jun 2021
Consequence-aware Sequential Counterfactual Generation
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
45
25
0
12 Apr 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
319
21,175
0
25 Mar 2021
Evaluating Robustness of Counterfactual Explanations
Evaluating Robustness of Counterfactual Explanations
André Artelt
Valerie Vaquet
Riza Velioglu
Fabian Hinder
Johannes Brinkrolf
M. Schilling
Barbara Hammer
69
46
0
03 Mar 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
53
169
0
20 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
47
172
0
08 Oct 2020
Convex Density Constraints for Computing Plausible Counterfactual
  Explanations
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
34
47
0
12 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
94
60
0
11 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
261
42,038
0
03 Dec 2019
Sparse and Imperceivable Adversarial Attacks
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
62
199
0
11 Sep 2019
Towards Robust, Locally Linear Deep Networks
Towards Robust, Locally Linear Deep Networks
Guang-He Lee
David Alvarez-Melis
Tommi Jaakkola
ODL
101
48
0
07 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
45
380
0
03 Jul 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
73
2,332
0
01 Nov 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
168
8,513
0
16 Aug 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
221
1,208
0
16 Aug 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
582
16,828
0
16 Feb 2016
1