ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.14573
  4. Cited By
Building Trust in Black-box Optimization: A Comprehensive Framework for
  Explainability

Building Trust in Black-box Optimization: A Comprehensive Framework for Explainability

18 October 2024
Nazanin Nezami
Hadis Anahideh
ArXiv (abs)PDFHTML

Papers citing "Building Trust in Black-box Optimization: A Comprehensive Framework for Explainability"

10 / 10 papers shown
Title
Towards Explainable Metaheuristic: Mining Surrogate Fitness Models for
  Importance of Variables
Towards Explainable Metaheuristic: Mining Surrogate Fitness Models for Importance of Variables
Manjinder Singh
Alexander E. I. Brownlee
David Cairns
47
13
0
31 May 2022
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
60
302
0
20 Apr 2021
Population-Based Black-Box Optimization for Biological Sequence Design
Population-Based Black-Box Optimization for Biological Sequence Design
Christof Angermüller
David Belanger
Andreea Gane
Zelda E. Mariet
David Dohan
Kevin Patrick Murphy
Lucy J. Colwell
D. Sculley
72
133
0
05 Jun 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
109
1,788
0
08 Jul 2018
The reparameterization trick for acquisition functions
The reparameterization trick for acquisition functions
James T. Wilson
Riccardo Moriconi
Frank Hutter
M. Deisenroth
63
81
0
01 Dec 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
16,990
0
16 Feb 2016
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
252
1,140
0
25 Jul 2012
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process
  Bandit Optimization
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization
Thomas Desautels
Andreas Krause
J. W. Burdick
104
473
0
27 Jun 2012
1