ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.13770
  4. Cited By
Probing the Latent Hierarchical Structure of Data via Diffusion Models
v1v2 (latest)

Probing the Latent Hierarchical Structure of Data via Diffusion Models

17 October 2024
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
Matthieu Wyart
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Probing the Latent Hierarchical Structure of Data via Diffusion Models"

41 / 41 papers shown
Title
On the Emergence of Linear Analogies in Word Embeddings
On the Emergence of Linear Analogies in Word Embeddings
Daniel J. Korchinski
Dhruva Karkada
Yasaman Bahri
Matthieu Wyart
50
0
0
24 May 2025
Bigger Isn't Always Memorizing: Early Stopping Overparameterized Diffusion Models
Bigger Isn't Always Memorizing: Early Stopping Overparameterized Diffusion Models
Alessandro Favero
Antonio Sclocchi
Matthieu Wyart
DiffM
51
0
0
22 May 2025
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
Matthieu Wyart
74
0
0
11 May 2025
Learning curves theory for hierarchically compositional data with power-law distributed features
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
Matthieu Wyart
115
1
0
11 May 2025
How Compositional Generalization and Creativity Improve as Diffusion Models are Trained
How Compositional Generalization and Creativity Improve as Diffusion Models are Trained
Alessandro Favero
Antonio Sclocchi
Francesco Cagnetta
Pascal Frossard
Matthieu Wyart
DiffMCoGe
83
6
0
17 Feb 2025
Avoiding mode collapse in diffusion models fine-tuned with reinforcement
  learning
Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning
Roberto Barceló
Cristóbal Alcázar
Felipe Tobar
77
4
0
10 Oct 2024
How transformers learn structured data: insights from hierarchical filtering
How transformers learn structured data: insights from hierarchical filtering
Jerome Garnier-Brun
Marc Mézard
Emanuele Moscato
Luca Saglietti
134
6
0
27 Aug 2024
Simple and Effective Masked Diffusion Language Models
Simple and Effective Masked Diffusion Language Models
Subham Sekhar Sahoo
Marianne Arriola
Yair Schiff
Aaron Gokaslan
Edgar Marroquin
Justin T Chiu
Alexander M. Rush
Volodymyr Kuleshov
DiffM
106
122
0
11 Jun 2024
Towards a theory of how the structure of language is acquired by deep
  neural networks
Towards a theory of how the structure of language is acquired by deep neural networks
Francesco Cagnetta
Matthieu Wyart
65
10
0
28 May 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and
  Diffusion in Generative Hierarchical Models
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DVAI4CEDiffM
64
13
0
29 Apr 2024
Critical windows: non-asymptotic theory for feature emergence in
  diffusion models
Critical windows: non-asymptotic theory for feature emergence in diffusion models
Marvin Li
Sitan Chen
DiffM
88
14
0
03 Mar 2024
Dynamical Regimes of Diffusion Models
Dynamical Regimes of Diffusion Models
Giulio Biroli
Tony Bonnaire
Valentin De Bortoli
Marc Mézard
DiffM
102
56
0
28 Feb 2024
A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
  of Data
A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data
Antonio Sclocchi
Alessandro Favero
Matthieu Wyart
DiffM
86
37
0
26 Feb 2024
The statistical thermodynamics of generative diffusion models: Phase
  transitions, symmetry breaking and critical instability
The statistical thermodynamics of generative diffusion models: Phase transitions, symmetry breaking and critical instability
Luca Ambrogioni
AI4CEDiffM
85
20
0
26 Oct 2023
U-Turn Diffusion
U-Turn Diffusion
Hamidreza Behjoo
Michael Chertkov
53
3
0
14 Aug 2023
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy
  Model
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
Matthieu Wyart
BDL
93
26
0
05 Jul 2023
InstructBLIP: Towards General-purpose Vision-Language Models with
  Instruction Tuning
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
Wenliang Dai
Junnan Li
Dongxu Li
A. M. H. Tiong
Junqi Zhao
Weisheng Wang
Boyang Albert Li
Pascale Fung
Steven C. H. Hoi
MLLMVLM
139
2,095
0
11 May 2023
Visual Instruction Tuning
Visual Instruction Tuning
Haotian Liu
Chunyuan Li
Qingyang Wu
Yong Jae Lee
SyDaVLMMLLM
571
4,910
0
17 Apr 2023
Learning multi-scale local conditional probability models of images
Learning multi-scale local conditional probability models of images
Zahra Kadkhodaie
Florentin Guth
S. Mallat
Eero P. Simoncelli
DiffM
85
19
0
06 Mar 2023
Diffusion Models Generate Images Like Painters: an Analytical Theory of
  Outline First, Details Later
Diffusion Models Generate Images Like Painters: an Analytical Theory of Outline First, Details Later
Binxu Wang
John J. Vastola
DiffM
162
27
0
04 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.5K
13,472
0
27 Feb 2023
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Tengjiao Wang
Ming-Hsuan Yang
DiffMMedIm
411
1,407
0
02 Sep 2022
Generative Modelling With Inverse Heat Dissipation
Generative Modelling With Inverse Heat Dissipation
Severi Rissanen
Markus Heinonen
Arno Solin
DiffM
90
118
0
21 Jun 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLMALM
886
13,207
0
04 Mar 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
186
5,213
0
10 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
496
15,768
0
20 Dec 2021
Structured Denoising Diffusion Models in Discrete State-Spaces
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin
Daniel D. Johnson
Jonathan Ho
Daniel Tarlow
Rianne van den Berg
DiffM
185
948
0
07 Jul 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
981
29,871
0
26 Feb 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
352
3,716
0
18 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
353
6,586
0
26 Nov 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
724
18,364
0
19 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
882
42,463
0
28 May 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,961
0
12 Jul 2019
A Provably Correct Algorithm for Deep Learning that Actually Works
A Provably Correct Algorithm for Deep Learning that Actually Works
Eran Malach
Shai Shalev-Shwartz
MLT
114
31
0
26 Mar 2018
Nonparametric regression using deep neural networks with ReLU activation
  function
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
238
816
0
22 Aug 2017
Failures of Gradient-Based Deep Learning
Failures of Gradient-Based Deep Learning
Shai Shalev-Shwartz
Ohad Shamir
Shaked Shammah
ODLUQCV
109
201
0
23 Mar 2017
Deep Learning and Hierarchal Generative Models
Deep Learning and Hierarchal Generative Models
Elchanan Mossel
BDLGAN
109
24
0
29 Dec 2016
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of
  Dimensionality: a Review
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
143
576
0
02 Nov 2016
A Probabilistic Theory of Deep Learning
A Probabilistic Theory of Deep Learning
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDLOODUQCV
85
89
0
02 Apr 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,031
0
12 Mar 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
184
706
0
30 Dec 2014
1