ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.13490
  4. Cited By
Novelty-based Sample Reuse for Continuous Robotics Control

Novelty-based Sample Reuse for Continuous Robotics Control

17 October 2024
Ke Duan
Kai Yang
Houde Liu
Xueqian Wang
ArXiv (abs)PDFHTML

Papers citing "Novelty-based Sample Reuse for Continuous Robotics Control"

18 / 18 papers shown
Title
Exploration and Anti-Exploration with Distributional Random Network
  Distillation
Exploration and Anti-Exploration with Distributional Random Network Distillation
Kai Yang
Jian Tao
Jiafei Lyu
Xiu Li
65
16
0
18 Jan 2024
Exploration in Deep Reinforcement Learning: A Survey
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
82
354
0
02 May 2022
MOPO: Model-based Offline Policy Optimization
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
78
773
0
27 May 2020
Controlling Overestimation Bias with Truncated Mixture of Continuous
  Distributional Quantile Critics
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics
Arsenii Kuznetsov
Pavel Shvechikov
Alexander Grishin
Dmitry Vetrov
234
195
0
08 May 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
82
363
0
27 Apr 2020
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
109
957
0
19 Jun 2019
Model-Based Reinforcement Learning for Atari
Model-Based Reinforcement Learning for Atari
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
...
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
OffRL
142
868
0
01 Mar 2019
Model-Based Reinforcement Learning via Meta-Policy Optimization
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
74
228
0
14 Sep 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
191
5,218
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,420
0
04 Jan 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
544
19,296
0
20 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
280
2,339
0
05 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRMSSL
125
2,453
0
15 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
831
11,952
0
09 Mar 2017
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLLAI4CE
83
2,465
0
15 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
179
1,484
0
06 Jun 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
327
13,289
0
09 Sep 2015
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
129
12,269
0
19 Dec 2013
1