ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10112
  4. Cited By
Can We Predict Performance of Large Models across Vision-Language Tasks?

Can We Predict Performance of Large Models across Vision-Language Tasks?

14 October 2024
Qinyu Zhao
Ming Xu
Kartik Gupta
Akshay Asthana
Liang Zheng
Stephen Gould
ArXivPDFHTML

Papers citing "Can We Predict Performance of Large Models across Vision-Language Tasks?"

9 / 59 papers shown
Title
A Corpus for Reasoning About Natural Language Grounded in Photographs
A Corpus for Reasoning About Natural Language Grounded in Photographs
Alane Suhr
Stephanie Zhou
Ally Zhang
Iris Zhang
Huajun Bai
Yoav Artzi
LRM
96
601
0
01 Nov 2018
Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion
Rianne van den Berg
Thomas Kipf
Max Welling
GNN
110
1,256
0
07 Jun 2017
Remote Sensing Image Scene Classification: Benchmark and State of the
  Art
Remote Sensing Image Scene Classification: Benchmark and State of the Art
Gong Cheng
Junwei Han
Xiaoqiang Lu
101
2,249
0
01 Mar 2017
Gated Multimodal Units for Information Fusion
Gated Multimodal Units for Information Fusion
John Arevalo
Thamar Solorio
Manuel Montes-y-Gómez
Fabio Gonzalez
71
378
0
07 Feb 2017
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense
  Image Annotations
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
Ranjay Krishna
Yuke Zhu
Oliver Groth
Justin Johnson
Kenji Hata
...
Yannis Kalantidis
Li Li
David A. Shamma
Michael S. Bernstein
Fei-Fei Li
194
5,726
0
23 Feb 2016
VQA: Visual Question Answering
VQA: Visual Question Answering
Aishwarya Agrawal
Jiasen Lu
Stanislaw Antol
Margaret Mitchell
C. L. Zitnick
Dhruv Batra
Devi Parikh
CoGe
176
5,452
0
03 May 2015
Challenges in Representation Learning: A report on three machine
  learning contests
Challenges in Representation Learning: A report on three machine learning contests
Ian Goodfellow
D. Erhan
P. Carrier
Aaron Courville
M. Berk Mirza
...
Jingjing Xie
Lukasz Romaszko
Bing Xu
Chuang Zhang
Yoshua Bengio
CVBM
126
1,612
0
01 Jul 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
162
4,295
0
18 Nov 2011
Previous
12