ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.09836
  4. Cited By
Learning Pattern-Specific Experts for Time Series Forecasting Under
  Patch-level Distribution Shift

Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift

13 October 2024
Yanru Sun
Zongxia Xie
Emadeldeen Eldele
Dongyue Chen
Q. Hu
Min-man Wu
    AI4TS
ArXivPDFHTML

Papers citing "Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift"

10 / 10 papers shown
Title
TFB: Towards Comprehensive and Fair Benchmarking of Time Series
  Forecasting Methods
TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods
Xiangfei Qiu
Jilin Hu
Lekui Zhou
Xingjian Wu
Junyang Du
...
Chenjuan Guo
Aoying Zhou
Christian S. Jensen
Zhenli Sheng
Bin Yang
AI4TS
80
79
0
29 Mar 2024
MoE-Mamba: Efficient Selective State Space Models with Mixture of
  Experts
MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts
Maciej Pióro
Kamil Ciebiera
Krystian Król
Jan Ludziejewski
Michał Krutul
Jakub Krajewski
Szymon Antoniak
Piotr Miłoś
Marek Cygan
Sebastian Jaszczur
MoE
Mamba
42
55
0
08 Jan 2024
iTransformer: Inverted Transformers Are Effective for Time Series
  Forecasting
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
Yong Liu
Tengge Hu
Haoran Zhang
Haixu Wu
Shiyu Wang
Lintao Ma
Mingsheng Long
AI4TS
43
516
0
10 Oct 2023
TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series
  Forecasting
TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting
Vijayabharathi Ekambaram
Arindam Jati
Nam H. Nguyen
Phanwadee Sinthong
Jayant Kalagnanam
AI4TS
97
151
0
14 Jun 2023
Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time
  Series Forecasting
Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting
Wei Fan
Pengyang Wang
Dongkun Wang
Dongjie Wang
Yuanchun Zhou
Yanjie Fu
AI4TS
55
79
0
22 Feb 2023
TimesNet: Temporal 2D-Variation Modeling for General Time Series
  Analysis
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis
Haixu Wu
Teng Hu
Yong Liu
Hang Zhou
Jianmin Wang
Mingsheng Long
AI4TS
AIFin
127
779
0
05 Oct 2022
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
Nan Du
Yanping Huang
Andrew M. Dai
Simon Tong
Dmitry Lepikhin
...
Kun Zhang
Quoc V. Le
Yonghui Wu
Zhiwen Chen
Claire Cui
ALM
MoE
201
812
0
13 Dec 2021
Learning under Concept Drift: A Review
Learning under Concept Drift: A Review
Jie Lu
Anjin Liu
Fan Dong
Feng Gu
João Gama
Guangquan Zhang
AI4TS
57
1,278
0
13 Apr 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
401
42,299
0
03 Dec 2019
Modeling Long- and Short-Term Temporal Patterns with Deep Neural
  Networks
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
Guokun Lai
Wei-Cheng Chang
Yiming Yang
Hanxiao Liu
BDL
AI4TS
104
1,997
0
21 Mar 2017
1