ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08417
  4. Cited By
Bilinear MLPs enable weight-based mechanistic interpretability

Bilinear MLPs enable weight-based mechanistic interpretability

10 October 2024
Michael T. Pearce
Thomas Dooms
Alice Rigg
José Oramas
Lee Sharkey
ArXivPDFHTML

Papers citing "Bilinear MLPs enable weight-based mechanistic interpretability"

4 / 4 papers shown
Title
Parameterized Synthetic Text Generation with SimpleStories
Parameterized Synthetic Text Generation with SimpleStories
Lennart Finke
Chandan Sreedhara
Thomas Dooms
Mat Allen
Emerald Zhang
Juan Diego Rodriguez
Noa Nabeshima
Thomas Marshall
Dan Braun
SyDa
32
0
0
12 Apr 2025
Compositionality Unlocks Deep Interpretable Models
Compositionality Unlocks Deep Interpretable Models
Thomas Dooms
Ward Gauderis
Geraint A. Wiggins
José Oramas
FAtt
CoGe
AI4CE
67
0
0
03 Apr 2025
Mixture of Experts Made Intrinsically Interpretable
Xingyi Yang
Constantin Venhoff
Ashkan Khakzar
Christian Schroeder de Witt
P. Dokania
Adel Bibi
Philip Torr
MoE
57
0
0
05 Mar 2025
Bilinear Convolution Decomposition for Causal RL Interpretability
Bilinear Convolution Decomposition for Causal RL Interpretability
Narmeen Oozeer
Sinem Erisken
Alice Rigg
65
0
0
01 Dec 2024
1