Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.06308
Cited By
Quantifying Training Difficulty and Accelerating Convergence in Neural Network-Based PDE Solvers
8 October 2024
Chuqi Chen
Qixuan Zhou
Yahong Yang
Yang Xiang
Tao Luo
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quantifying Training Difficulty and Accelerating Convergence in Neural Network-Based PDE Solvers"
14 / 14 papers shown
Title
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
68
4
0
05 Jun 2024
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
62
2
0
23 May 2024
HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions
Haoyang Zheng
Yao Huang
Ziyang Huang
Wenrui Hao
Guang Lin
PINN
25
13
0
06 Apr 2023
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAG
MLLM
1.4K
14,631
0
15 Mar 2023
DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator Splitting
Yuan Lan
Zerui Li
Jie Sun
Yang Xiang
52
11
0
11 Dec 2022
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
162
284
0
20 Apr 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,414
0
18 Oct 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
914
0
28 Jul 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
814
42,055
0
28 May 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
84
185
0
10 Mar 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,131
0
08 Oct 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
124
516
0
19 Jan 2019
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
121
1,387
0
30 Sep 2017
1