Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.06266
Cited By
v1
v2 (latest)
Near Exact Privacy Amplification for Matrix Mechanisms
8 October 2024
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Near Exact Privacy Amplification for Matrix Mechanisms"
25 / 25 papers shown
Title
Back to Square Roots: An Optimal Bound on the Matrix Factorization Error for Multi-Epoch Differentially Private SGD
Nikita P. Kalinin
Ryan McKenna
Jalaj Upadhyay
Christoph H. Lampert
112
1
0
17 May 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
125
0
0
16 Mar 2025
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
142
6
0
21 Dec 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
108
0
0
01 Oct 2024
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
106
8
0
16 Aug 2024
Continual Counting with Gradual Privacy Expiration
Joel Daniel Andersson
Monika Henzinger
Rasmus Pagh
Teresa Anna Steiner
Jalaj Upadhyay
85
2
0
06 Jun 2024
Efficient and Near-Optimal Noise Generation for Streaming Differential Privacy
Krishnamurthy Dvijotham
H. B. McMahan
Krishna Pillutla
Thomas Steinke
Abhradeep Thakurta
81
16
0
25 Apr 2024
Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
77
11
0
24 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
75
17
0
10 Oct 2023
(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A. Choquette-Choo
Arun Ganesh
Ryan McKenna
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Zheng Xu
FedML
92
41
0
13 Jun 2023
A Randomized Approach for Tight Privacy Accounting
Jiachen T. Wang
Saeed Mahloujifar
Tong Wu
R. Jia
Prateek Mittal
82
10
0
17 Apr 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
152
180
0
01 Mar 2023
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
Christopher A. Choquette-Choo
H. B. McMahan
Keith Rush
Abhradeep Thakurta
67
46
0
12 Nov 2022
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
97
66
0
16 Feb 2022
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
286
368
0
25 Sep 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
55
104
0
16 Jun 2021
Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
79
162
0
23 Dec 2020
Privacy Amplification via Random Check-Ins
Borja Balle
Peter Kairouz
H. B. McMahan
Om Thakkar
Abhradeep Thakurta
FedML
80
72
0
13 Jul 2020
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
A. Koskela
Hibiki Ito
Lukas Prediger
Antti Honkela
48
59
0
12 Jun 2020
That which we call private
Ulfar Erlingsson
Ilya Mironov
A. Raghunathan
Shuang Song
46
26
0
08 Aug 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
199
430
0
29 Nov 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
87
393
0
04 Jul 2018
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
Borja Balle
Yu Wang
MLT
85
411
0
16 May 2018
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,172
0
01 Jul 2016
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
137
1,474
0
06 Mar 2008
1