ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.06171
  4. Cited By
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
  Machines

Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines

8 October 2024
Edward Milsom
Ben Anson
Laurence Aitchison
ArXiv (abs)PDFHTML

Papers citing "Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines"

21 / 21 papers shown
Title
Kernel Regression with Infinite-Width Neural Networks on Millions of
  Examples
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
72
12
0
09 Mar 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
57
7
0
19 Feb 2023
Separation of Scales and a Thermodynamic Description of Feature Learning
  in Some CNNs
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
86
55
0
31 Dec 2021
The Principles of Deep Learning Theory
The Principles of Deep Learning Theory
Daniel A. Roberts
Sho Yaida
Boris Hanin
FaMLPINNGNN
78
246
0
18 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning
  effects in finite CNNs
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSLMLT
82
33
0
08 Jun 2021
Deep kernel processes
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
88
42
0
04 Oct 2020
Neural Networks and Quantum Field Theory
Neural Networks and Quantum Field Theory
James Halverson
Anindita Maiti
Keegan Stoner
78
78
0
19 Aug 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
80
214
0
31 Jul 2020
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Benjamin Charlier
Jean Feydy
J. Glaunès
François-David Collin
G. Durif
68
178
0
27 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
68
133
0
03 Nov 2019
Why bigger is not always better: on finite and infinite neural networks
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
237
54
0
17 Oct 2019
Asymptotics of Wide Networks from Feynman Diagrams
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
95
115
0
25 Sep 2019
Deep Convolutional Networks as shallow Gaussian Processes
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDLUQCV
112
271
0
16 Aug 2018
Improving Generalization Performance by Switching from Adam to SGD
Improving Generalization Performance by Switching from Adam to SGD
N. Keskar
R. Socher
ODL
105
524
0
20 Dec 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
139
1,100
0
01 Nov 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDLGP
96
422
0
24 May 2017
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
Julien Mairal
SSL
71
130
0
20 May 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
256
888
0
06 Nov 2015
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GPBDL
151
1,184
0
02 Nov 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
286
12,467
0
24 Jun 2012
1