Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.02819
Cited By
Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
25 September 2024
M. Chenaud
Frédéric Magoulès
José Alves
AI4CE
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems"
21 / 21 papers shown
Title
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
105
14
0
23 Sep 2022
Finite Element Method-enhanced Neural Network for Forward and Inverse Problems
R. Meethal
B. Obst
Mohamed Khalil
A. Ghantasala
A. Kodakkal
K. Bletzinger
R. Wüchner
AI4CE
50
33
0
17 May 2022
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
123
270
0
21 Jun 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
707
0
19 Mar 2021
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
82
804
0
07 Oct 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
916
0
28 Jul 2020
Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction
Filipe de Avila Belbute-Peres
T. Economon
J. Zico Kolter
AI4CE
103
231
0
08 Jul 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
145
1,101
0
21 Feb 2020
Lagrangian Duality for Constrained Deep Learning
Ferdinando Fioretto
Pascal Van Hentenryck
Terrence W.K. Mak
Cuong Tran
Federico Baldo
M. Lombardi
PINN
47
83
0
26 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
547
42,591
0
03 Dec 2019
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
215
1,381
0
27 Aug 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
69
275
0
13 Jun 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
118
899
0
04 Jun 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
788
8,566
0
03 Jan 2019
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
154
1,336
0
11 Dec 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
769
3,129
0
04 Jun 2018
A unified deep artificial neural network approach to partial differential equations in complex geometries
Jens Berg
K. Nystrom
AI4CE
65
586
0
17 Nov 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,389
0
30 Sep 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
665
29,156
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
360
7,671
0
30 Jun 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
172
2,816
0
20 Feb 2015
1