ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.02711
  4. Cited By
NETS: A Non-Equilibrium Transport Sampler
v1v2v3 (latest)

NETS: A Non-Equilibrium Transport Sampler

3 October 2024
M. S. Albergo
Eric Vanden-Eijnden
    DiffM
ArXiv (abs)PDFHTML

Papers citing "NETS: A Non-Equilibrium Transport Sampler"

32 / 32 papers shown
Title
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
Chenguang Wang
Xiaoyu Zhang
Kaiyuan Cui
Weichen Zhao
Yongtao Guan
Tianshu Yu
DiffM
75
0
0
26 May 2025
On scalable and efficient training of diffusion samplers
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
116
0
0
26 May 2025
Energy-based generator matching: A neural sampler for general state space
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
82
0
0
26 May 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
143
2
0
16 Apr 2025
Sequential Controlled Langevin Diffusions
Sequential Controlled Langevin Diffusions
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
111
21
0
10 Dec 2024
Path-Guided Particle-based Sampling
Path-Guided Particle-based Sampling
Mingzhou Fan
Ruida Zhou
C. Tian
Xiaoning Qian
117
7
0
04 Dec 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
107
8
0
16 Oct 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
94
2
0
29 Jul 2024
Posterior Sampling with Denoising Oracles via Tilted Transport
Posterior Sampling with Denoising Oracles via Tilted Transport
Joan Bruna
Jiequn Han
DiffMMedIm
68
6
0
30 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
93
26
0
11 Jun 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
90
13
0
03 May 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
74
57
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
173
28
0
07 Feb 2024
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
301
325
0
15 Mar 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
56
89
0
27 Feb 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
90
28
0
18 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
124
94
0
02 Nov 2022
Action Matching: Learning Stochastic Dynamics from Samples
Action Matching: Learning Stochastic Dynamics from Samples
Kirill Neklyudov
Rob Brekelmans
Daniel de Souza Severo
Alireza Makhzani
71
58
0
13 Oct 2022
Flow Matching for Generative Modeling
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
209
1,373
0
06 Oct 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
95
17
0
23 Sep 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
200
1,043
0
07 Sep 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
102
94
0
03 Aug 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
94
53
0
31 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
65
35
0
21 Jan 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
100
117
0
30 Nov 2021
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffMOT
111
475
0
01 Jun 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
83
78
0
15 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
353
6,566
0
26 Nov 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
677
18,310
0
19 Jun 2020
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
63
219
0
26 Apr 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
429
5,157
0
19 Jun 2018
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
103
161
0
17 Dec 2014
1