Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.01930
Cited By
v1
v2 (latest)
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
2 October 2024
Ghada Sokar
J. Obando-Ceron
Rameswar Panda
Hugo Larochelle
Pablo Samuel Castro
MoE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL"
48 / 48 papers shown
Title
Mind the GAP! The Challenges of Scale in Pixel-based Deep Reinforcement Learning
Ghada Sokar
Pablo Samuel Castro
51
0
0
23 May 2025
Impoola: The Power of Average Pooling for Image-Based Deep Reinforcement Learning
Raphael Trumpp
Ansgar Schäfftlein
Mirco Theile
Marco Caccamo
87
1
0
07 Mar 2025
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Hojoon Lee
Dongyoon Hwang
Donghu Kim
Hyunseung Kim
Jun Jet Tai
K. Subramanian
Peter R. Wurman
Jaegul Choo
Peter Stone
Takuma Seno
OffRL
155
16
0
13 Oct 2024
Neuroplastic Expansion in Deep Reinforcement Learning
Jiashun Liu
J. Obando-Ceron
Rameswar Panda
L. Pan
89
6
0
10 Oct 2024
Beyond Parameter Count: Implicit Bias in Soft Mixture of Experts
Youngseog Chung
Dhruv Malik
J. Schneider
Yuanzhi Li
Aarti Singh
MoE
91
1
0
02 Sep 2024
Mixture of Experts in a Mixture of RL settings
Timon Willi
J. Obando-Ceron
Jakob Foerster
Karolina Dziugaite
Pablo Samuel Castro
MoE
128
11
0
26 Jun 2024
Addressing Loss of Plasticity and Catastrophic Forgetting in Continual Learning
Mohamed Elsayed
A. Rupam Mahmood
CLL
79
24
0
31 Mar 2024
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Jesse Farebrother
Jordi Orbay
Q. Vuong
Adrien Ali Taïga
Yevgen Chebotar
...
Sergey Levine
Pablo Samuel Castro
Aleksandra Faust
Aviral Kumar
Rishabh Agarwal
OffRL
101
64
0
06 Mar 2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
AI4CE
113
37
0
29 Feb 2024
In value-based deep reinforcement learning, a pruned network is a good network
J. Obando-Ceron
Rameswar Panda
Pablo Samuel Castro
OffRL
95
25
0
19 Feb 2024
Mixtures of Experts Unlock Parameter Scaling for Deep RL
J. Obando-Ceron
Ghada Sokar
Timon Willi
Clare Lyle
Jesse Farebrother
Jakob N. Foerster
Gintare Karolina Dziugaite
Doina Precup
Pablo Samuel Castro
118
42
0
13 Feb 2024
Directions of Curvature as an Explanation for Loss of Plasticity
Alex Lewandowski
Haruto Tanaka
Dale Schuurmans
Marlos C. Machado
73
6
0
30 Nov 2023
Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages
Guozheng Ma
Lu Li
Sen Zhang
Zixuan Liu
Zhen Wang
Yixin Chen
Li Shen
Xueqian Wang
Dacheng Tao
OffRL
80
20
0
11 Oct 2023
Small batch deep reinforcement learning
J. Obando-Ceron
Marc G. Bellemare
Pablo Samuel Castro
VLM
85
19
0
05 Oct 2023
From Sparse to Soft Mixtures of Experts
J. Puigcerver
C. Riquelme
Basil Mustafa
N. Houlsby
MoE
175
127
0
02 Aug 2023
TaskExpert: Dynamically Assembling Multi-Task Representations with Memorial Mixture-of-Experts
Hanrong Ye
Dan Xu
MoE
75
28
0
28 Jul 2023
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
J. Obando-Ceron
Rameswar Panda
Marc G. Bellemare
Rishabh Agarwal
Pablo Samuel Castro
OffRL
91
100
0
30 May 2023
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks
Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
Pablo Samuel Castro
Marc G. Bellemare
96
29
0
25 Apr 2023
Understanding plasticity in neural networks
Clare Lyle
Zeyu Zheng
Evgenii Nikishin
Bernardo Avila-Pires
Razvan Pascanu
Will Dabney
AI4CE
105
104
0
02 Mar 2023
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
Ghada Sokar
Rishabh Agarwal
Pablo Samuel Castro
Utku Evci
CLL
94
97
0
24 Feb 2023
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts
Trevor Gale
Deepak Narayanan
C. Young
Matei A. Zaharia
MoE
76
108
0
29 Nov 2022
Offline Q-Learning on Diverse Multi-Task Data Both Scales And Generalizes
Aviral Kumar
Rishabh Agarwal
Xinyang Geng
George Tucker
Sergey Levine
OffRL
104
51
0
28 Nov 2022
The State of Sparse Training in Deep Reinforcement Learning
L. Graesser
Utku Evci
Erich Elsen
Pablo Samuel Castro
OffRL
61
39
0
17 Jun 2022
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Rameswar Panda
OnRL
146
194
0
16 May 2022
Understanding and Preventing Capacity Loss in Reinforcement Learning
Clare Lyle
Mark Rowland
Will Dabney
CLL
84
113
0
20 Apr 2022
Mixture-of-Experts with Expert Choice Routing
Yan-Quan Zhou
Tao Lei
Han-Chu Liu
Nan Du
Yanping Huang
Vincent Zhao
Andrew M. Dai
Zhifeng Chen
Quoc V. Le
James Laudon
MoE
301
367
0
18 Feb 2022
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
123
676
0
30 Aug 2021
Dynamic Sparse Training for Deep Reinforcement Learning
Ghada Sokar
Elena Mocanu
Decebal Constantin Mocanu
Mykola Pechenizkiy
Peter Stone
83
57
0
08 Jun 2021
DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning
Hussein Hazimeh
Zhe Zhao
Aakanksha Chowdhery
M. Sathiamoorthy
Yihua Chen
Rahul Mazumder
Lichan Hong
Ed H. Chi
MoE
159
144
0
07 Jun 2021
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
W. Fedus
Barret Zoph
Noam M. Shazeer
MoE
88
2,220
0
11 Jan 2021
Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
J. Obando-Ceron
Pablo Samuel Castro
OffRL
76
109
0
20 Nov 2020
Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning
Aviral Kumar
Rishabh Agarwal
Dibya Ghosh
Sergey Levine
OffRL
65
122
0
27 Oct 2020
Scalable Transfer Learning with Expert Models
J. Puigcerver
C. Riquelme
Basil Mustafa
Cédric Renggli
André Susano Pinto
Sylvain Gelly
Daniel Keysers
N. Houlsby
128
63
0
28 Sep 2020
Biased Mixtures Of Experts: Enabling Computer Vision Inference Under Data Transfer Limitations
Alhabib Abbas
Y. Andreopoulos
MoE
96
18
0
21 Aug 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Zhiwen Chen
MoE
124
1,191
0
30 Jun 2020
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
14,995
0
18 Jun 2020
Transient Non-Stationarity and Generalisation in Deep Reinforcement Learning
Maximilian Igl
Gregory Farquhar
Jelena Luketina
Wendelin Boehmer
Shimon Whiteson
81
88
0
10 Jun 2020
Leveraging Procedural Generation to Benchmark Reinforcement Learning
K. Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
81
557
0
03 Dec 2019
When to use parametric models in reinforcement learning?
H. V. Hasselt
Matteo Hessel
John Aslanides
83
194
0
12 Jun 2019
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Brandon Yang
Gabriel Bender
Quoc V. Le
Jiquan Ngiam
MedIm
3DV
72
636
0
10 Apr 2019
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
74
278
0
14 Dec 2018
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
237
1,605
0
05 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,406
0
04 Jan 2018
Rainbow: Combining Improvements in Deep Reinforcement Learning
Matteo Hessel
Joseph Modayil
H. V. Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
M. G. Azar
David Silver
OffRL
107
2,270
0
06 Oct 2017
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
101
1,506
0
21 Jul 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
535
19,265
0
20 Jul 2017
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Noam M. Shazeer
Azalia Mirhoseini
Krzysztof Maziarz
Andy Davis
Quoc V. Le
Geoffrey E. Hinton
J. Dean
MoE
253
2,686
0
23 Jan 2017
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
120
3,021
0
19 Jul 2012
1