ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.01476
  4. Cited By
Reducing Variance in Meta-Learning via Laplace Approximation for
  Regression Tasks
v1v2 (latest)

Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks

2 October 2024
Alfredo Reichlin
Gustaf Tegnér
Miguel Vasco
Hang Yin
Mårten Björkman
Danica Kragic
ArXiv (abs)PDFHTML

Papers citing "Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks"

20 / 20 papers shown
Title
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta
  Learning, Provably?
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?
Lisha Chen
Tianyi
BDL
65
16
0
06 Mar 2022
Generalizing to New Physical Systems via Context-Informed Dynamics Model
Generalizing to New Physical Systems via Context-Informed Dynamics Model
Matthieu Kirchmeyer
Yuan Yin
Jérémie Donà
Nicolas Baskiotis
A. Rakotomamonjy
Patrick Gallinari
OODAI4CE
142
37
0
01 Feb 2022
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
305
647
0
19 Sep 2019
Meta-Learning with Warped Gradient Descent
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
98
210
0
30 Aug 2019
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
OODBDLUQCV
63
54
0
27 Jul 2019
Meta-Curvature
Meta-Curvature
Eunbyung Park
Junier B. Oliva
BDL
60
124
0
09 Feb 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
106
442
0
17 Jan 2019
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
88
705
0
04 Jul 2018
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCVBDL
288
503
0
11 Jun 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard Turner
BDL
120
265
0
24 May 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
90
510
0
26 Jan 2018
Over the Air Deep Learning Based Radio Signal Classification
Over the Air Deep Learning Based Radio Signal Classification
Tim O'Shea
Tamoghna Roy
T. Clancy
74
1,089
0
13 Dec 2017
One-Shot Visual Imitation Learning via Meta-Learning
One-Shot Visual Imitation Learning via Meta-Learning
Chelsea Finn
Tianhe Yu
Tianhao Zhang
Pieter Abbeel
Sergey Levine
SSL
126
566
0
14 Sep 2017
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
96
1,121
0
31 Jul 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
303
8,150
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
122
2,008
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
104
1,023
0
19 Mar 2015
1