ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.01316
  4. Cited By
Fast Summation of Radial Kernels via QMC Slicing
v1v2 (latest)

Fast Summation of Radial Kernels via QMC Slicing

2 October 2024
Johannes Hertrich
Tim Jahn
Michael Quellmalz
ArXiv (abs)PDFHTML

Papers citing "Fast Summation of Radial Kernels via QMC Slicing"

26 / 26 papers shown
Title
Slicing the Gaussian Mixture Wasserstein Distance
Slicing the Gaussian Mixture Wasserstein Distance
Moritz Piening
Robert Beinert
83
0
0
11 Apr 2025
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Nicolaj Rux
Michael Quellmalz
Gabriele Steidl
74
0
0
10 Apr 2025
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Yuanmin Huang
Zhen Huang
112
0
0
08 Mar 2025
Generative Feature Training of Thin 2-Layer Networks
Generative Feature Training of Thin 2-Layer Networks
J. Hertrich
Sebastian Neumayer
GAN
153
2
0
11 Nov 2024
(De)-regularized Maximum Mean Discrepancy Gradient Flow
(De)-regularized Maximum Mean Discrepancy Gradient Flow
Zonghao Chen
Aratrika Mustafi
Pierre Glaser
Anna Korba
Arthur Gretton
Bharath K. Sriperumbudur
42
8
0
23 Sep 2024
On the design of scalable, high-precision spherical-radial Fourier
  features
On the design of scalable, high-precision spherical-radial Fourier features
Ayoub Belhadji
Qianyu Julie Zhu
Youssef Marzouk
71
1
0
23 Aug 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
76
9
0
10 May 2024
Fast Kernel Summation in High Dimensions via Slicing and Fourier
  Transforms
Fast Kernel Summation in High Dimensions via Slicing and Fourier Transforms
Johannes Hertrich
137
7
0
16 Jan 2024
Momentum Particle Maximum Likelihood
Momentum Particle Maximum Likelihood
Jen Ning Lim
Juan Kuntz
Samuel Power
A. M. Johansen
59
9
0
12 Dec 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
116
25
0
04 Oct 2023
Quasi-Monte Carlo for 3D Sliced Wasserstein
Quasi-Monte Carlo for 3D Sliced Wasserstein
Khai Nguyen
Nicola Bariletto
Nhat Ho
74
17
0
21 Sep 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
97
27
0
19 May 2023
Equispaced Fourier representations for efficient Gaussian process
  regression from a billion data points
Equispaced Fourier representations for efficient Gaussian process regression from a billion data points
P. Greengard
M. Rachh
A. Barnett
76
12
0
18 Oct 2022
The Fast Kernel Transform
The Fast Kernel Transform
J. Ryan
Sebastian Ament
Carla P. Gomes
Anil Damle
51
9
0
08 Jun 2021
Generalization Bounds for Sparse Random Feature Expansions
Generalization Bounds for Sparse Random Feature Expansions
Abolfazl Hashemi
Hayden Schaeffer
Robert Shi
Ufuk Topcu
Giang Tran
Rachel A. Ward
MLT
145
42
0
04 Mar 2021
cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform
  FFTs
cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs
Yu-hsuan Shih
Garrett Wright
Joakim Andén
Johannes P. Blaschke
A. Barnett
94
27
0
16 Feb 2021
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Benjamin Charlier
Jean Feydy
J. Glaunès
François-David Collin
G. Durif
72
178
0
27 Mar 2020
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
132
164
0
11 Jun 2019
Quadrature-based features for kernel approximation
Quadrature-based features for kernel approximation
Marina Munkhoeva
Yermek Kapushev
Evgeny Burnaev
Ivan Oseledets
77
54
0
11 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
291
8,939
0
25 Aug 2017
Orthogonal Random Features
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
99
222
0
28 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
127
1,095
0
16 Aug 2016
On the Error of Random Fourier Features
On the Error of Random Fourier Features
Danica J. Sutherland
J. Schneider
103
193
0
09 Jun 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
97
166
0
29 Dec 2014
ASKIT: Approximate Skeletonization Kernel-Independent Treecode in High
  Dimensions
ASKIT: Approximate Skeletonization Kernel-Independent Treecode in High Dimensions
William B. March
Bo Xiao
George Biros
116
51
0
01 Oct 2014
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
247
2,370
0
15 May 2008
1