ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.00700
  4. Cited By
Mining Your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models
v1v2v3 (latest)

Mining Your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

International Conference on Learning Representations (ICLR), 2024
1 October 2024
Saurav Jha
Shiqi Yang
Masato Ishii
Mengjie Zhao
Christian Simon
Muhammad Jehanzeb Mirza
Dong Gong
Lina Yao
Shusuke Takahashi
Yuki Mitsufuji
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Mining Your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models"

38 / 38 papers shown
Title
Low-Rank Continual Personalization of Diffusion Models
Low-Rank Continual Personalization of Diffusion Models
Łukasz Staniszewski
Katarzyna Zaleska
Kamil Deja
DiffM
297
1
0
07 Oct 2024
LoRA Learns Less and Forgets Less
LoRA Learns Less and Forgets Less
D. Biderman
Jose Javier Gonzalez Ortiz
Jacob P. Portes
Mansheej Paul
Philip Greengard
...
Sam Havens
Vitaliy Chiley
Jonathan Frankle
Cody Blakeney
John P. Cunningham
CLL
245
221
0
15 May 2024
CLAP4CLIP: Continual Learning with Probabilistic Finetuning for
  Vision-Language Models
CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models
Saurav Jha
Dong Gong
Lina Yao
CLIPVLM
333
17
0
28 Mar 2024
GUIDE: Guidance-based Incremental Learning with Diffusion Models
GUIDE: Guidance-based Incremental Learning with Diffusion Models
Bartosz Cywiński
Kamil Deja
Tomasz Trzciñski
Bartlomiej Twardowski
Lukasz Kuciñski
DiffM
152
6
0
06 Mar 2024
Continual Diffusion with STAMINA: STack-And-Mask INcremental Adapters
Continual Diffusion with STAMINA: STack-And-Mask INcremental Adapters
James Seale Smith
Yen-Chang Hsu
Z. Kira
Yilin Shen
Hongxia Jin
DiffM
275
9
0
30 Nov 2023
Expanding Expressiveness of Diffusion Models with Limited Data via
  Self-Distillation based Fine-Tuning
Expanding Expressiveness of Diffusion Models with Limited Data via Self-Distillation based Fine-TuningIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2023
Jiwan Hur
Jaehyun Choi
Gyojin Han
Dong-Jae Lee
Junmo Kim
199
10
0
02 Nov 2023
NPCL: Neural Processes for Uncertainty-Aware Continual Learning
NPCL: Neural Processes for Uncertainty-Aware Continual LearningNeural Information Processing Systems (NeurIPS), 2023
Saurav Jha
Dong Gong
He Zhao
Lina Yao
CLLBDL
145
20
0
30 Oct 2023
VeRA: Vector-based Random Matrix Adaptation
VeRA: Vector-based Random Matrix AdaptationInternational Conference on Learning Representations (ICLR), 2023
D. J. Kopiczko
Tijmen Blankevoort
Yuki Markus Asano
VLM
231
244
0
17 Oct 2023
Continual Diffusion: Continual Customization of Text-to-Image Diffusion
  with C-LoRA
Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA
James Smith
Yen-Chang Hsu
Lingyu Zhang
Ting Hua
Z. Kira
Yilin Shen
Hongxia Jin
DiffM
383
139
0
12 Apr 2023
Your Diffusion Model is Secretly a Zero-Shot Classifier
Your Diffusion Model is Secretly a Zero-Shot ClassifierIEEE International Conference on Computer Vision (ICCV), 2023
Alexander C. Li
Mihir Prabhudesai
Shivam Duggal
Ellis L Brown
Deepak Pathak
DiffMVLM
519
299
0
28 Mar 2023
Text-to-Image Diffusion Models are Zero-Shot Classifiers
Text-to-Image Diffusion Models are Zero-Shot ClassifiersNeural Information Processing Systems (NeurIPS), 2023
Kevin Clark
P. Jaini
DiffMVLM
300
145
0
27 Mar 2023
A Comprehensive Survey of Continual Learning: Theory, Method and
  Application
A Comprehensive Survey of Continual Learning: Theory, Method and ApplicationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Liyuan Wang
Xingxing Zhang
Hang Su
Jun Zhu
KELMCLL
645
1,012
0
31 Jan 2023
Multi-Concept Customization of Text-to-Image Diffusion
Multi-Concept Customization of Text-to-Image DiffusionComputer Vision and Pattern Recognition (CVPR), 2022
Nupur Kumari
Bin Zhang
Richard Y. Zhang
Eli Shechtman
Jun-Yan Zhu
511
1,115
0
08 Dec 2022
Editing Models with Task Arithmetic
Editing Models with Task ArithmeticInternational Conference on Learning Representations (ICLR), 2022
Gabriel Ilharco
Marco Tulio Ribeiro
Mitchell Wortsman
Suchin Gururangan
Ludwig Schmidt
Hannaneh Hajishirzi
Ali Farhadi
KELMMoMeMU
935
707
0
08 Dec 2022
On Distillation of Guided Diffusion Models
On Distillation of Guided Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2022
Chenlin Meng
Robin Rombach
Ruiqi Gao
Diederik P. Kingma
Stefano Ermon
Jonathan Ho
Tim Salimans
VLMDiffM
170
676
0
06 Oct 2022
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
  Subject-Driven Generation
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven GenerationComputer Vision and Pattern Recognition (CVPR), 2022
Nataniel Ruiz
Yuanzhen Li
Varun Jampani
Yael Pritch
Michael Rubinstein
Kfir Aberman
704
3,614
0
25 Aug 2022
An Image is Worth One Word: Personalizing Text-to-Image Generation using
  Textual Inversion
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual InversionInternational Conference on Learning Representations (ICLR), 2022
Rinon Gal
Yuval Alaluf
Yuval Atzmon
Or Patashnik
Amit H. Bermano
Gal Chechik
Daniel Cohen-Or
381
2,364
0
02 Aug 2022
Photorealistic Text-to-Image Diffusion Models with Deep Language
  Understanding
Photorealistic Text-to-Image Diffusion Models with Deep Language UnderstandingNeural Information Processing Systems (NeurIPS), 2022
Chitwan Saharia
William Chan
Saurabh Saxena
Lala Li
Jay Whang
...
Raphael Gontijo-Lopes
Tim Salimans
Jonathan Ho
David J Fleet
Mohammad Norouzi
VLM
1.0K
7,294
0
23 May 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2021
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
DiffM
1.2K
20,250
0
20 Dec 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision TransformersIEEE International Conference on Computer Vision (ICCV), 2021
Mathilde Caron
Hugo Touvron
Ishan Misra
Edouard Grave
Julien Mairal
Piotr Bojanowski
Armand Joulin
1.8K
7,623
0
29 Apr 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language SupervisionInternational Conference on Machine Learning (ICML), 2021
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
1.9K
39,552
0
26 Feb 2021
Class-incremental learning: survey and performance evaluation on image
  classification
Class-incremental learning: survey and performance evaluation on image classificationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Marc Masana
Xialei Liu
Bartlomiej Twardowski
Mikel Menta
Andrew D. Bagdanov
Joost van de Weijer
CLL
363
798
0
28 Oct 2020
Continual Learning in Human Activity Recognition: an Empirical Analysis
  of Regularization
Continual Learning in Human Activity Recognition: an Empirical Analysis of Regularization
Saurav Jha
Martin Schiemer
Juan Ye
CLL
109
13
0
06 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
3.9K
24,599
0
19 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
530
1,337
0
16 Jun 2020
Dark Experience for General Continual Learning: a Strong, Simple
  Baseline
Dark Experience for General Continual Learning: a Strong, Simple BaselineNeural Information Processing Systems (NeurIPS), 2020
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Davide Abati
Simone Calderara
BDLCLL
279
1,097
0
15 Apr 2020
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for
  Instance-Level Recognition and Retrieval
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and RetrievalComputer Vision and Pattern Recognition (CVPR), 2020
Tobias Weyand
A. Araújo
Bingyi Cao
Jack Sim
242
415
0
03 Apr 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data DistributionNeural Information Processing Systems (NeurIPS), 2019
Yang Song
Stefano Ermon
SyDaDiffM
629
4,712
0
12 Jul 2019
Class-incremental Learning via Deep Model Consolidation
Class-incremental Learning via Deep Model ConsolidationIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2019
Junting Zhang
Jie Zhang
Shalini Ghosh
Dawei Li
Serafettin Tasci
Larry Heck
Heming Zhang
C.-C. Jay Kuo
CLL
346
366
0
19 Mar 2019
Experience Replay for Continual Learning
Experience Replay for Continual Learning
David Rolnick
Arun Ahuja
Jonathan Richard Schwarz
Timothy Lillicrap
Greg Wayne
CLL
364
1,369
0
28 Nov 2018
Progress & Compress: A scalable framework for continual learning
Progress & Compress: A scalable framework for continual learning
Jonathan Richard Schwarz
Jelena Luketina
Wojciech M. Czarnecki
A. Grabska-Barwinska
Yee Whye Teh
Razvan Pascanu
R. Hadsell
CLL
362
951
0
16 May 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
1.7K
1,753
0
04 Jan 2018
Attention Is All You Need
Attention Is All You NeedNeural Information Processing Systems (NeurIPS), 2017
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
2.3K
156,849
0
12 Jun 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
933
8,602
0
02 Dec 2016
Learning without Forgetting
Learning without ForgettingIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016
Zhizhong Li
Derek Hoiem
CLLOODSSL
899
5,000
0
29 Jun 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
2.7K
87,448
0
18 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
1.2K
8,577
0
12 Mar 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the WildIEEE International Conference on Computer Vision (ICCV), 2014
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
1.2K
9,086
0
28 Nov 2014
1