ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.00617
  4. Cited By
Radio Foundation Models: Pre-training Transformers for 5G-based Indoor
  Localization

Radio Foundation Models: Pre-training Transformers for 5G-based Indoor Localization

1 October 2024
Jonathan Ott
Jonas Pirkl
Maximilian Stahlke
Tobias Feigl
Christopher Mutschler
ArXiv (abs)PDFHTML

Papers citing "Radio Foundation Models: Pre-training Transformers for 5G-based Indoor Localization"

2 / 2 papers shown
Title
Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
Jonathan Ott
Maximilian Stahlke
Tobias Feigl
Bjoern M. Eskofier
Christopher Mutschler
97
0
0
19 May 2025
A MIMO Wireless Channel Foundation Model via CIR-CSI Consistency
A MIMO Wireless Channel Foundation Model via CIR-CSI Consistency
Jun Jiang
Wenjun Yu
Yunfan Li
Yuan Gao
Shugong Xu
146
5
0
17 Feb 2025
1