ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.17858
  4. Cited By
How Feature Learning Can Improve Neural Scaling Laws

How Feature Learning Can Improve Neural Scaling Laws

26 September 2024
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
ArXivPDFHTML

Papers citing "How Feature Learning Can Improve Neural Scaling Laws"

11 / 11 papers shown
Title
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
M. Wyart
26
0
0
11 May 2025
Corner Gradient Descent
Corner Gradient Descent
Dmitry Yarotsky
36
0
0
16 Apr 2025
Dynamically Learning to Integrate in Recurrent Neural Networks
Dynamically Learning to Integrate in Recurrent Neural Networks
Blake Bordelon
Jordan Cotler
C. Pehlevan
Jacob A. Zavatone-Veth
53
2
0
24 Mar 2025
A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
Kairong Luo
Haodong Wen
Shengding Hu
Zhenbo Sun
Zhiyuan Liu
Maosong Sun
Kaifeng Lyu
Wenguang Chen
CLL
59
1
0
17 Mar 2025
Uncertainty Quantification From Scaling Laws in Deep Neural Networks
Ibrahim Elsharkawy
Yonatan Kahn
Benjamin Hooberman
UQCV
45
0
0
07 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
61
1
0
04 Feb 2025
Loss-to-Loss Prediction: Scaling Laws for All Datasets
Loss-to-Loss Prediction: Scaling Laws for All Datasets
David Brandfonbrener
Nikhil Anand
Nikhil Vyas
Eran Malach
Sham Kakade
77
3
0
19 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Analyzing Neural Scaling Laws in Two-Layer Networks with Power-Law Data
  Spectra
Analyzing Neural Scaling Laws in Two-Layer Networks with Power-Law Data Spectra
Roman Worschech
B. Rosenow
39
0
0
11 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
A Generalization Bound for Nearly-Linear Networks
A Generalization Bound for Nearly-Linear Networks
Eugene Golikov
26
0
0
09 Jul 2024
1