ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.17641
25
1

AP-VLM: Active Perception Enabled by Vision-Language Models

26 September 2024
Venkatesh Sripada
Samuel Carter
Frank Guerin
Amir Ghalamzan
    LM&Ro
ArXivPDFHTML
Abstract

Active perception enables robots to dynamically gather information by adjusting their viewpoints, a crucial capability for interacting with complex, partially observable environments. In this paper, we present AP-VLM, a novel framework that combines active perception with a Vision-Language Model (VLM) to guide robotic exploration and answer semantic queries. Using a 3D virtual grid overlaid on the scene and orientation adjustments, AP-VLM allows a robotic manipulator to intelligently select optimal viewpoints and orientations to resolve challenging tasks, such as identifying objects in occluded or inclined positions. We evaluate our system on two robotic platforms: a 7-DOF Franka Panda and a 6-DOF UR5, across various scenes with differing object configurations. Our results demonstrate that AP-VLM significantly outperforms passive perception methods and baseline models, including Toward Grounded Common Sense Reasoning (TGCSR), particularly in scenarios where fixed camera views are inadequate. The adaptability of AP-VLM in real-world settings shows promise for enhancing robotic systems' understanding of complex environments, bridging the gap between high-level semantic reasoning and low-level control.

View on arXiv
Comments on this paper