ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.15950
  4. Cited By
TSFeatLIME: An Online User Study in Enhancing Explainability in
  Univariate Time Series Forecasting

TSFeatLIME: An Online User Study in Enhancing Explainability in Univariate Time Series Forecasting

24 September 2024
Hongnan Ma
Kevin McAreavey
Weiru Liu
    AI4TSFAtt
ArXiv (abs)PDFHTML

Papers citing "TSFeatLIME: An Online User Study in Enhancing Explainability in Univariate Time Series Forecasting"

4 / 4 papers shown
Title
TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series
  Forecast Models
TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models
U. Schlegel
D. Lam
Daniel A. Keim
Daniel Seebacher
FAttAI4TS
107
32
0
17 Sep 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAIAI4TS
99
135
0
02 Apr 2021
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI
  Explainability Techniques
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
74
393
0
06 Sep 2019
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,092
0
16 Feb 2016
1