ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13764
  4. Cited By
Local Explanations and Self-Explanations for Assessing Faithfulness in
  black-box LLMs

Local Explanations and Self-Explanations for Assessing Faithfulness in black-box LLMs

18 September 2024
Christos Fragkathoulas
Odysseas S. Chlapanis
    LRM
ArXiv (abs)PDFHTML

Papers citing "Local Explanations and Self-Explanations for Assessing Faithfulness in black-box LLMs"

11 / 11 papers shown
Title
Using Captum to Explain Generative Language Models
Using Captum to Explain Generative Language Models
Vivek Miglani
Aobo Yang
Aram H. Markosyan
Diego Garcia-Olano
Narine Kokhlikyan
86
32
0
09 Dec 2023
Ethical and social risks of harm from Language Models
Ethical and social risks of harm from Language Models
Laura Weidinger
John F. J. Mellor
Maribeth Rauh
Conor Griffin
J. Uesato
...
Lisa Anne Hendricks
William S. Isaac
Sean Legassick
G. Irving
Iason Gabriel
PILM
119
1,042
0
08 Dec 2021
BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation
Weizhe Yuan
Graham Neubig
Pengfei Liu
123
849
0
22 Jun 2021
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
880
42,379
0
28 May 2020
Generating Hierarchical Explanations on Text Classification via Feature
  Interaction Detection
Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
Hanjie Chen
Guangtao Zheng
Yangfeng Ji
FAtt
97
95
0
04 Apr 2020
REALM: Retrieval-Augmented Language Model Pre-Training
REALM: Retrieval-Augmented Language Model Pre-Training
Kelvin Guu
Kenton Lee
Zora Tung
Panupong Pasupat
Ming-Wei Chang
RALM
145
2,116
0
10 Feb 2020
End-to-End Open-Domain Question Answering with BERTserini
End-to-End Open-Domain Question Answering with BERTserini
Wei Yang
Yuqing Xie
Aileen Lin
Xingyu Li
Luchen Tan
Kun Xiong
Ming Li
Jimmy J. Lin
RALM
124
495
0
05 Feb 2019
Techniques for Interpretable Machine Learning
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Helen Zhou
FaML
88
1,092
0
31 Jul 2018
TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for
  Reading Comprehension
TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension
Mandar Joshi
Eunsol Choi
Daniel S. Weld
Luke Zettlemoyer
RALM
228
2,686
0
09 May 2017
Reading Wikipedia to Answer Open-Domain Questions
Reading Wikipedia to Answer Open-Domain Questions
Danqi Chen
Adam Fisch
Jason Weston
Antoine Bordes
RALM
121
2,019
0
31 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,033
0
16 Feb 2016
1