ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12319
  4. Cited By
Large Language Models are Strong Audio-Visual Speech Recognition Learners

Large Language Models are Strong Audio-Visual Speech Recognition Learners

18 September 2024
Umberto Cappellazzo
Minsu Kim
Honglie Chen
Pingchuan Ma
Stavros Petridis
Daniele Falavigna
Alessio Brutti
Maja Pantic
ArXivPDFHTML

Papers citing "Large Language Models are Strong Audio-Visual Speech Recognition Learners"

5 / 5 papers shown
Title
MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens
Jeong Hun Yeo
Hyeongseop Rha
Se Jin Park
Y. Ro
51
0
0
14 Mar 2025
Adaptive Audio-Visual Speech Recognition via Matryoshka-Based Multimodal LLMs
Umberto Cappellazzo
Minsu Kim
Stavros Petridis
54
0
0
09 Mar 2025
Audio-Visual Representation Learning via Knowledge Distillation from Speech Foundation Models
Jing-Xuan Zhang
Genshun Wan
Jianqing Gao
Zhen-Hua Ling
47
0
0
09 Feb 2025
mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition
mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition
Andrew Rouditchenko
Saurabhchand Bhati
Samuel Thomas
Hilde Kuehne
Rogerio Feris
111
1
0
03 Feb 2025
Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?
Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?
Yiwen Guan
V. Trinh
Vivek Voleti
Jacob Whitehill
34
1
0
13 Sep 2024
1