ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.10069
  4. Cited By
Enhancing Anomaly Detection via Generating Diversified and
  Hard-to-distinguish Synthetic Anomalies

Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies

16 September 2024
Hyuntae Kim
Changhee Lee
    AAML
ArXivPDFHTML

Papers citing "Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies"

2 / 2 papers shown
Title
Context-Aware Online Conformal Anomaly Detection with Prediction-Powered Data Acquisition
Context-Aware Online Conformal Anomaly Detection with Prediction-Powered Data Acquisition
Amirmohammad Farzaneh
Osvaldo Simeone
38
0
0
03 May 2025
MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection
MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection
Long Qian
Bingke Zhu
Yingying Chen
Ming Tang
Jinqiao Wang
43
0
0
17 Apr 2025
1