ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.09797
  4. Cited By
Domain and Content Adaptive Convolutions for Cross-Domain Adenocarcinoma
  Segmentation

Domain and Content Adaptive Convolutions for Cross-Domain Adenocarcinoma Segmentation

15 September 2024
Frauke Wilm
Mathias Öttl
Marc Aubreville
Katharina Breininger
    OOD
    MedIm
ArXivPDFHTML

Papers citing "Domain and Content Adaptive Convolutions for Cross-Domain Adenocarcinoma Segmentation"

3 / 3 papers shown
Title
Mind the Gap: Scanner-induced domain shifts pose challenges for
  representation learning in histopathology
Mind the Gap: Scanner-induced domain shifts pose challenges for representation learning in histopathology
Frauke Wilm
Marco Fragoso
C. Bertram
N. Stathonikos
Mathias Öttl
Jingna Qiu
R. Klopfleisch
Andreas Maier
Marc Aubreville
Katharina Breininger
OOD
MedIm
32
4
0
29 Nov 2022
Deep neural network models for computational histopathology: A survey
Deep neural network models for computational histopathology: A survey
C. Srinidhi
Ozan Ciga
Anne L. Martel
AI4CE
71
573
0
28 Dec 2019
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
974
76,547
0
18 May 2015
1