ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.08655
  4. Cited By
LMAC-TD: Producing Time Domain Explanations for Audio Classifiers

LMAC-TD: Producing Time Domain Explanations for Audio Classifiers

13 September 2024
Eleonora Mancini
Francesco Paissan
Mirco Ravanelli
Cem Subakan
ArXiv (abs)PDFHTML

Papers citing "LMAC-TD: Producing Time Domain Explanations for Audio Classifiers"

15 / 15 papers shown
Title
Listenable Maps for Zero-Shot Audio Classifiers
Listenable Maps for Zero-Shot Audio Classifiers
Francesco Paissan
Luca Della Libera
Mirco Ravanelli
Cem Subakan
83
4
0
27 May 2024
A Model You Can Hear: Audio Identification with Playable Prototypes
A Model You Can Hear: Audio Identification with Playable Prototypes
Romain Loiseau
Baptiste Bouvier
Yann Teytaut
Elliot Vincent
Mathieu Aubry
Loic Landrieu
44
6
0
05 Aug 2022
Listen to Interpret: Post-hoc Interpretability for Audio Networks with
  NMF
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
Jayneel Parekh
Sanjeel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
G. Richard
52
25
0
23 Feb 2022
Attention is All You Need in Speech Separation
Attention is All You Need in Speech Separation
Cem Subakan
Mirco Ravanelli
Samuele Cornell
Mirko Bronzi
Jianyuan Zhong
95
557
0
25 Oct 2020
Evaluating and Aggregating Feature-based Model Explanations
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
90
224
0
01 May 2020
VGGSound: A Large-scale Audio-Visual Dataset
VGGSound: A Large-scale Audio-Visual Dataset
Honglie Chen
Weidi Xie
Andrea Vedaldi
Andrew Zisserman
89
577
0
29 Apr 2020
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern
  Recognition
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
Qiuqiang Kong
Yin Cao
Turab Iqbal
Yuxuan Wang
Wenwu Wang
Mark D. Plumbley
VLMSSL
189
1,076
0
21 Dec 2019
WHAM!: Extending Speech Separation to Noisy Environments
WHAM!: Extending Speech Separation to Noisy Environments
Gordon Wichern
J. Antognini
Michael Flynn
Licheng Richard Zhu
E. McQuinn
Dwight Crow
Ethan Manilow
Jonathan Le Roux
82
345
0
02 Jul 2019
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,300
0
30 Oct 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
188
5,989
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
312
20,023
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
16,990
0
16 Feb 2016
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
1